shouq0i commited on
Commit
770393e
·
verified ·
1 Parent(s): afd68a9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -121
app.py CHANGED
@@ -1,131 +1,47 @@
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
2
  import os
3
- from PyPDF2 import PdfReader
4
- from transformers import pipeline
5
- from langchain.prompts import ChatPromptTemplate
6
  from io import BytesIO
7
- import time
8
- import wandb
9
- from rouge import Rouge
10
 
11
- # Environment variables setup
12
- os.environ['TOGETHER_API_KEY'] = 'your_together_api_key'
13
- os.environ['PINECONE_API_KEY'] = 'your_pinecone_api_key'
14
- ELEVENLABS_API_KEY = 'your_elevenlabs_api_key'
15
 
16
- # Summarization prompt
17
- summary_prompt = """
18
- You are an expert AI summarization model tasked with creating a comprehensive summary for 10 years old kids of the provided context. The summary should be approximately one page long and well-structured.
19
 
20
- this is the context:
21
- ```{context}```
22
-
23
- Please follow these specific guidelines for the summary:
24
-
25
- ### Detailed Summary
26
- - **Section 1: Key Concepts**
27
- - Introduce the first major topic or theme.
28
- - Use bullet points to list important details and insights.
29
-
30
- - **Section 2: Supporting Details**
31
- - Discuss secondary topics or supporting arguments.
32
- - Use bullet points to outline critical information and findings.
33
-
34
- ### Conclusion
35
- - Suggest any potential actions, solutions, or recommendations.
36
-
37
- this is the summary:
38
- """
39
- summary_prompt_template = ChatPromptTemplate.from_template(summary_prompt)
40
-
41
- # Define the PDF extraction function
42
- def extract_text_from_pdf(file):
43
- reader = PdfReader(file)
44
- text = ""
45
- for page in reader.pages:
46
- text += page.extract_text()
47
- return text
48
-
49
- # Define the text-to-speech function
50
- def text_to_speech_stream(text):
51
- client = ElevenLabs(api_key=ELEVENLABS_API_KEY)
52
- response = client.text_to_speech.convert(
53
- voice_id="jBpfuIE2acCO8z3wKNLl",
54
- optimize_streaming_latency="0",
55
- output_format="mp3_44100_64",
56
- text=text,
57
- model_id="eleven_multilingual_v2",
58
- voice_settings=VoiceSettings(
59
- stability=0.5,
60
- similarity_boost=0.75,
61
- style=0,
62
- use_speaker_boost=True,
63
- ),
64
- )
65
-
66
- audio_data = BytesIO()
67
- for chunk in response:
68
- if chunk:
69
- audio_data.write(chunk)
70
-
71
- audio_data.seek(0)
72
- if not os.path.exists('samples'):
73
- os.makedirs('samples')
74
-
75
- with open('samples/output.mp3', 'wb') as f:
76
- f.write(audio_data.read())
77
-
78
- return 'samples/output.mp3'
79
-
80
- # Define the evaluation function
81
- def evaluate_summary(generated_summary):
82
- wandb.init(project="learnverse")
83
-
84
- reference_summaries = ["Reference summary 1...", "Reference summary 2...", "Reference summary 3..."]
85
- rouge = Rouge()
86
-
87
- rouge_1, rouge_2, rouge_l = {'r': 0, 'p': 0, 'f': 0}, {'r': 0, 'p': 0, 'f': 0}, {'r': 0, 'p': 0, 'f': 0}
88
-
89
- for reference in reference_summaries:
90
- scores = rouge.get_scores(generated_summary, reference)
91
- rouge_1['r'] += scores[0]['rouge-1']['r']
92
- rouge_1['p'] += scores[0]['rouge-1']['p']
93
- rouge_1['f'] += scores[0]['rouge-1']['f']
94
- rouge_2['r'] += scores[0]['rouge-2']['r']
95
- rouge_2['p'] += scores[0]['rouge-2']['p']
96
- rouge_2['f'] += scores[0]['rouge-2']['f']
97
- rouge_l['r'] += scores[0]['rouge-l']['r']
98
- rouge_l['p'] += scores[0]['rouge-l']['p']
99
- rouge_l['f'] += scores[0]['rouge-l']['f']
100
-
101
- num_references = len(reference_summaries)
102
- rouge_1 = {key: value / num_references for key, value in rouge_1.items()}
103
- rouge_2 = {key: value / num_references for key, value in rouge_2.items()}
104
- rouge_l = {key: value / num_references for key, value in rouge_l.items()}
105
-
106
- wandb.log(rouge_1)
107
- wandb.log(rouge_2)
108
- wandb.log(rouge_l)
109
- wandb.finish()
110
-
111
- return {'ROUGE-1': rouge_1, 'ROUGE-2': rouge_2, 'ROUGE-L': rouge_l}
112
-
113
- # Define the main processing function
114
  def process_question(file):
 
115
  pdffile = extract_text_from_pdf(file)
116
- summary = summary_prompt_template.invoke({"context": pdffile})
 
117
  evaluation = evaluate_summary(summary)
118
  audio_file = text_to_speech_stream(summary)
119
- return summary, evaluation, audio_file
120
-
121
- # Define the Gradio interface
122
- def gradio_interface(file):
123
- summary, evaluation, audio_file = process_question(file)
124
- return summary, evaluation, audio_file
125
-
126
- # Launch the Gradio app
127
- gr.Interface(
128
- fn=gradio_interface,
129
- inputs=gr.File(type="file", label="Upload PDF"),
130
- outputs=[gr.Textbox(label="Summary"), gr.Textbox(label="Evaluation"), gr.Audio(label="Generated Audio")]
131
- ).launch()
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from langchain_together import ChatTogether
3
+ from langchain_community.llms import Together
4
+ from langchain_pinecone import PineconeVectorStore
5
+ from langchain_openai import OpenAIEmbeddings
6
+ from langchain_core.prompts import ChatPromptTemplate
7
+ from langchain_core.output_parsers import StrOutputParser
8
+ from langchain_community.document_loaders import PyPDFLoader
9
+ from elevenlabs.client import ElevenLabs
10
+ from transformers import AutoTokenizer, AutoModelForCausalLM
11
  import os
12
+ import torch
 
 
13
  from io import BytesIO
 
 
 
14
 
15
+ # Environment Variables
16
+ os.environ['TOGETHER_API_KEY'] = 'e83925ff068ab5e4598a56f68385fd37144469f50eec94f5c2e6647798f1be9e'
17
+ os.environ['PINECONE_API_KEY'] = 'f7413055-9b13-4bbc-8c92-56132e034bff'
 
18
 
19
+ # Define your functions and classes here based on your original code
 
 
20
 
21
+ # Example function to process questions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  def process_question(file):
23
+ # Use your existing functions to process the PDF and generate outputs
24
  pdffile = extract_text_from_pdf(file)
25
+ three_topics = topic_chain.invoke({"context": pdffile})
26
+ summary = summary_pdf_chain.invoke(pdffile)
27
  evaluation = evaluate_summary(summary)
28
  audio_file = text_to_speech_stream(summary)
29
+ prompt = topics_prompt
30
+ shape = generate_gif(prompt)
31
+ ai_asistant = animate_image(audio_file)
32
+ return summary, evaluation, ai_asistant, shape
33
+
34
+ # Define Gradio Interface
35
+ iface = gr.Interface(
36
+ fn=process_question,
37
+ inputs=gr.inputs.File(label="Upload PDF File"),
38
+ outputs=[
39
+ gr.outputs.Textbox(label="Summary"),
40
+ gr.outputs.Textbox(label="Evaluation"),
41
+ gr.outputs.Audio(label="AI Assistant"),
42
+ gr.outputs.Image(label="3D Shape")
43
+ ]
44
+ )
45
+
46
+ if __name__ == "__main__":
47
+ iface.launch()