shouq0i commited on
Commit
e331554
·
verified ·
1 Parent(s): 8747544

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +44 -526
app.py CHANGED
@@ -1,50 +1,20 @@
1
- from langchain_together import ChatTogether
2
-
3
- """# ⭐ LLM model with togithor Ai
4
-
5
- """
6
-
7
- from langchain_community.llms import Together
8
-
9
- import os
10
- os.environ['TOGETHER_API_KEY'] = 'e83925ff068ab5e4598a56f68385fd37144469f50eec94f5c2e6647798f1be9e'
11
-
12
- response = Together(
13
- model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
14
- max_tokens=1524,
15
- temperature=0.2,
16
- # top_p=1.1,
17
- # top_k=40,
18
-
19
- repetition_penalty=1.1,
20
- together_api_key=os.environ.get('TOGETHER_API_KEY')
21
- )
22
-
23
- """# ⭐ Pinecone Vectore Database
24
-
25
- """
26
-
27
-
28
- from langchain_pinecone import PineconeVectorStore
29
- from langchain_openai import OpenAIEmbeddings
30
- import os
31
- os.environ['PINECONE_API_KEY']='f7413055-9b13-4bbc-8c92-56132e034bff'
32
-
33
- em=OpenAIEmbeddings(api_key='sk-Q43XYIJudIE0Q7e5t23U5CjA5dMNYRGlMOhfm6VTA2T3BlbkFJn3a9zqCCIdjRcV7QKmkok3n0F1BL_KS0OzkLEbjXgA',model="text-embedding-3-small")
34
- pc=PineconeVectorStore(index_name="learnverse",embedding=em)
35
-
36
- """#⭐ Summarization"""
37
-
38
  import gradio as gr
 
 
39
  from transformers import BitsAndBytesConfig, pipeline
40
- from langchain_huggingface import HuggingFacePipeline
41
  from langchain_core.prompts import ChatPromptTemplate
42
  from langchain_core.output_parsers import StrOutputParser
 
 
43
 
44
- """# Summary Prompt"""
 
 
 
45
 
46
- prompt = """
47
- You are an expert AI summarization model tasked with creating a comprehensive summary for 10 years old kids of the provided context. The summary should be approximately one pages long and well-structured.
 
48
 
49
  this is the context:
50
  ```{context}```
@@ -63,82 +33,24 @@ prompt = """
63
  ### Conclusion
64
  - Suggest any potential actions, solutions, or recommendations.
65
 
66
-
67
-
68
  this is the summary:
69
-
70
- """
71
- summary_prompt = ChatPromptTemplate.from_template(
72
- prompt
73
- )
74
-
75
- summary_llm_chain = summary_prompt | response | StrOutputParser()
76
-
77
- # create a function that upload pdf file and the summary chain get the file
78
- from langchain_core.runnables import RunnablePassthrough
79
-
80
- summary_pdf_chain = {"context": RunnablePassthrough()} | summary_llm_chain
81
-
82
- """# Query Prompt"""
83
-
84
- q_prompt = """
85
- you are the greatest Question answering model ,you will get a question and answer the question based on the context.
86
-
87
- this is the context:
88
- ```{context}```
89
-
90
- this is the questions: {question}
91
- """
92
- query_prompt = ChatPromptTemplate.from_template(
93
- q_prompt
94
- )
95
-
96
- query_llm_chain = query_prompt | response | StrOutputParser()
97
-
98
- from langchain_core.runnables import RunnablePassthrough
99
-
100
- retriever = pc.as_retriever(
101
- search_type="similarity",
102
- search_kwargs={'k': 4}
103
- )
104
-
105
- query_rag_chain = {"context": retriever, "question": RunnablePassthrough()}|query_llm_chain
106
-
107
- """# ⭐ Extract Text From Pdf
108
-
109
  """
 
110
 
111
- from langchain_community.document_loaders import PyPDFLoader
112
- import time
113
-
114
  def extract_text_from_pdf(file):
115
  loader = PyPDFLoader(file)
116
  pages = loader.load_and_split()
117
- pc.from_documents(pages,index_name='learnverse',embedding=em)
118
-
119
  text = ""
120
  for page in pages:
121
-
122
- text += page.page_content
123
  return text
124
 
125
- """# Text-to-Speech"""
126
-
127
- from io import BytesIO
128
- from elevenlabs import VoiceSettings, play
129
- from elevenlabs.client import ElevenLabs
130
- import ffmpeg
131
- import IPython.display as ipd
132
- import os
133
-
134
- # Make sure to import the required classes
135
- # sk_dcb140eeca914ac72a06ae91c4e9742b2c559c7451831c71
136
- def text_to_speech_stream(text: str):
137
- ELEVENLABS_API_KEY = 'sk_3ec0ff46017e49189870e2dc9c51f87939d6e2d8cc823316'
138
- client = ElevenLabs(
139
- api_key=ELEVENLABS_API_KEY,
140
- )
141
-
142
  response = client.text_to_speech.convert(
143
  voice_id="jBpfuIE2acCO8z3wKNLl",
144
  optimize_streaming_latency="0",
@@ -159,459 +71,65 @@ def text_to_speech_stream(text: str):
159
  audio_data.write(chunk)
160
 
161
  audio_data.seek(0)
162
-
163
- # Create 'samples' directory if it doesn't exist
164
  if not os.path.exists('samples'):
165
  os.makedirs('samples')
166
 
167
- # Write the audio data to a file
168
  with open('samples/output.mp3', 'wb') as f:
169
  f.write(audio_data.read())
170
 
171
  return 'samples/output.mp3'
172
 
173
- """# �� Get Topics
174
-
175
- """
176
-
177
- # prompt for extracting three topics
178
-
179
- topics_prompt="""
180
-
181
- Extract the Main Topics:
182
-
183
- Analyze the following text and identify the one main clear topic that related to AI like robot and VR etc Then, translate the topic into a simplified format that can be understood . The goal is to ensure that the topic would be easy and clear so the model can accurately generate a 3d shape based on the simplified concepts.
184
-
185
- Text: {context}
186
- Answer:
187
-
188
- """
189
-
190
- tp = ChatPromptTemplate.from_template(topics_prompt)
191
-
192
- topic_chain = tp | response | StrOutputParser()
193
-
194
- """# Evauluation summary"""
195
-
196
-
197
- import wandb
198
- wandb.login()
199
- # 956c40e3fd97485d68ec80c6841faec28368fd34
200
-
201
- from rouge import Rouge
202
-
203
  def evaluate_summary(generated_summary):
204
- wandb.init(
205
- # set the wandb project where this run will be logged
206
- project="learnverse")
207
- """
208
- Evaluates the generated summary against a list of reference summaries using the ROUGE metric.
209
-
210
- Parameters:
211
- - reference_summaries (list of str): A list of reference summaries (ground truth).
212
- - generated_summary (str): The summary generated by the model.
213
-
214
- Returns:
215
- - dict: A dictionary containing the average ROUGE-1, ROUGE-2, and ROUGE-L scores.
216
- """
217
- # Variable 1
218
- summary1 = """
219
- Introduction: The context discusses the concept of Artificial Intelligence (AI), its evolution, and its applications in various fields. AI is a branch of computer science that aims to create intelligent machines capable of performing tasks that typically require human intelligence.
220
-
221
- Section 1: Key Concepts
222
- * Definition and Types of AI: AI can be classified into three types: Weak or Narrow AI, General AI, and Strong AI. Weak AI is the most widely used type, which can perform a pre-defined narrow set of instructions without exhibiting any thinking capability.
223
- * Machine Learning and Deep Learning: Machine Learning (ML) is a subset of AI that enables computers to learn from data and past experiences. Deep Learning (DL) is a subdomain of ML that mimics the human nervous system and is used for image recognition, pattern recognition, and feature extraction.
224
- * Applications of AI: AI has various applications in fields such as agriculture, business, education, entertainment, healthcare, and space exploration.
225
-
226
- Section 2: Supporting Details
227
- * Agriculture: AI is used in soil analysis, crop sowing, pest control, and crop harvesting. It has improved crop yields and reduced the use of chemical fertilizers.
228
- * Healthcare: AI is used in medical diagnosis, image analysis, and patient monitoring. It has improved the accuracy of diagnosis and reduced the workload of healthcare professionals.
229
- * Education: AI is used in personalized learning, adaptive assessments, and intelligent tutoring systems. It has improved student outcomes and increased access to education.
230
-
231
- Section 3: Analysis and Interpretation
232
- * Impact of AI: AI has the potential to transform various industries and improve the quality of life. However, it also raises concerns about job displacement, data privacy, and security.
233
- * Challenges and Limitations: AI requires large amounts of data, computational power, and expertise. It also faces challenges related to interpretability, transparency, and accountability.
234
-
235
- Conclusion: In conclusion, AI is a rapidly evolving field with various applications in different industries. While it has the potential to transform the world, it also raises concerns about its impact on society. To fully harness the benefits of AI, it is essential to address its challenges and limitations and ensure that its development and deployment are responsible and ethical.
236
- """
237
-
238
- # Variable 2
239
- summary2 = """
240
- Introduction: The provided context is an introduction to Artificial Intelligence (AI), its subsets, and applications in various fields. The main purpose is to explore the capabilities, types, and domains of AI, as well as its impact on modern society.
241
-
242
- Detailed Summary
243
-
244
- Section 1: Key Concepts
245
- * Definition and Types of AI: AI is a branch of computer science that enables computers to mimic human behavior. There are three types of AI: Weak or Narrow AI, General AI, and Strong AI.
246
- * Domains of AI: The major domains of AI include neural networks, robotics, expert systems, fuzzy logic systems, and natural language processing (NLP).
247
- * Subsets of AI: The two major subsets of AI are Machine Learning (ML) and Deep Learning (DL).
248
-
249
- Section 2: Supporting Details
250
- * Machine Learning: ML is a subset of AI that enables computers to learn from data and past experiences. There are three types of ML: Supervised Learning, Unsupervised Learning, and Reinforcement Learning.
251
- * Deep Learning: DL is a subdomain of ML that mimics the human nervous system. It has various applications, including image recognition, natural language processing, and speech recognition.
252
- * Applications of AI: AI has numerous applications in agriculture, business, education, entertainment, healthcare, and space exploration.
253
-
254
- Section 3: Analysis and Interpretation
255
- * Impact of AI: AI has transformed various industries and has the potential to revolutionize healthcare, education, and other sectors.
256
- * Challenges and Limitations: AI faces challenges such as data accuracy, security, and interpretability. It also raises concerns about job displacement and bias.
257
- * Future Directions: AI is expected to continue growing and improving, with potential applications in areas like genome editing, personalized medicine, and smart cities.
258
-
259
- Conclusion: In conclusion, AI is a rapidly evolving field with numerous applications and potential benefits. However, it also raises concerns about data accuracy, security, and job displacement. As AI continues to grow and improve, it is essential to address these challenges and ensure that its benefits are equitably distributed.
260
- """
261
-
262
- # Variable 3
263
- summary3 = """
264
- Introduction: The context discusses the concept of Artificial Intelligence (AI) and its applications in various fields. AI is a branch of computer science that enables computers to mimic human behavior, assisting humans in performance and decision-making. The context highlights the importance of AI in modern society, its subsets, and its impact on healthcare, education, business, and other sectors.
265
-
266
- Section 1: Key Concepts
267
- * Artificial Intelligence (AI): AI is a domain of computer science that deals with the development of intelligent computer systems capable of perceiving, analyzing, and reacting to inputs.
268
- * Types of AI: AI can be classified into three types based on capabilities: Weak or Narrow AI, General AI, and Strong AI.
269
- * Subsets of AI: Machine Learning (ML) and Deep Learning (DL) are two subsets of AI used to solve problems using high-performance algorithms and multilayer neural networks.
270
-
271
- Section 2: Supporting Details
272
- * Applications of AI: AI has various applications in healthcare, education, business, and other sectors, including medical diagnosis, image processing, web search engines, and finance.
273
- * Machine Learning (ML): ML is a subset of AI that enables computers to learn from data and past experiences, improving performance and prediction accuracy.
274
- * Deep Learning (DL): DL is a subdomain of ML that mimics the human nervous system, using neural networks to analyze and interpret data.
275
-
276
- Section 3: Analysis and Interpretation
277
- * Impact of AI: AI has transformed various sectors, including healthcare, education, and business, by improving efficiency, accuracy, and decision-making.
278
- * Challenges and Limitations: AI faces challenges such as data accuracy, security, and interpretability, which need to be addressed to ensure its effective implementation.
279
- * Future Directions: AI is expected to continue transforming various sectors, with potential applications in space exploration, smart cities, and transportation.
280
-
281
- Conclusion: In conclusion, AI is a rapidly evolving field with significant implications for various sectors. Its subsets, ML and DL, have transformed the way we approach problems and make decisions. While AI faces challenges and limitations, its potential applications and benefits make it an essential technology for the future.
282
- """
283
-
284
-
285
- # Create the list of reference summaries
286
- reference_summaries = [summary1, summary2, summary3]
287
-
288
- # Initialize the ROUGE evaluator
289
  rouge = Rouge()
290
-
291
- # Initialize accumulators for ROUGE scores
292
- rouge_1 = {'r': 0, 'p': 0, 'f': 0}
293
- rouge_2 = {'r': 0, 'p': 0, 'f': 0}
294
- rouge_l = {'r': 0, 'p': 0, 'f': 0}
295
-
296
- # Evaluate each reference summary
297
- i=0
298
  for reference in reference_summaries:
299
  scores = rouge.get_scores(generated_summary, reference)
300
- i+=1
301
-
302
  rouge_1['r'] += scores[0]['rouge-1']['r']
303
  rouge_1['p'] += scores[0]['rouge-1']['p']
304
  rouge_1['f'] += scores[0]['rouge-1']['f']
305
-
306
  rouge_2['r'] += scores[0]['rouge-2']['r']
307
  rouge_2['p'] += scores[0]['rouge-2']['p']
308
  rouge_2['f'] += scores[0]['rouge-2']['f']
309
-
310
  rouge_l['r'] += scores[0]['rouge-l']['r']
311
  rouge_l['p'] += scores[0]['rouge-l']['p']
312
  rouge_l['f'] += scores[0]['rouge-l']['f']
313
- # print('\n')
314
- print("score #"+str(i))
315
- print(scores)
316
- # print(rouge_1)
317
- # print(rouge_2)
318
- # print(rouge_l)
319
-
320
- # Calculate the average scores
321
  num_references = len(reference_summaries)
322
  rouge_1 = {key: value / num_references for key, value in rouge_1.items()}
323
  rouge_2 = {key: value / num_references for key, value in rouge_2.items()}
324
  rouge_l = {key: value / num_references for key, value in rouge_l.items()}
325
-
326
- # Return the average scores in a dictionary
327
- print('\n')
328
- print("The Average Scores")
329
- print('')
330
-
331
- print(rouge_1)
332
- print(rouge_2)
333
- print(rouge_l)
334
- print('\n\n\n')
335
-
336
-
337
-
338
  wandb.log(rouge_1)
339
  wandb.log(rouge_2)
340
  wandb.log(rouge_l)
341
-
342
-
343
- if rouge_1['p'] < 0.1 and rouge_2['p'] < 0.1 and rouge_l['p'] < 0.1:
344
- wandb.alert(title='Low Precesion', text=f'Precesion {rouge_1["p"]},{rouge_2["p"]},{rouge_l["p"]} is below the acceptable theshold')
345
-
346
  wandb.finish()
347
- return {
348
- 'ROUGE-1': rouge_1,
349
- 'ROUGE-2': rouge_2,
350
- 'ROUGE-L': rouge_l
351
- }
352
-
353
- """# 🦾 Function Integrator"""
354
 
 
355
  def process_question(file):
356
-
357
- #pd_file is for giving the ai asist somthing short to create
358
- # pd_file = "AI is very good"
359
-
360
-
361
  pdffile = extract_text_from_pdf(file)
362
  three_topics = topic_chain.invoke({"context": pdffile})
363
- print("--------Three Topics------")
364
- print(three_topics)
365
-
366
  summary = summary_pdf_chain.invoke(pdffile)
367
- print("\n--------Summary---------")
368
- print(summary)
369
-
370
- print("--------Evaluation Summary---------")
371
  evaluation = evaluate_summary(summary)
372
-
373
-
374
-
375
-
376
  audio_file = text_to_speech_stream(summary)
377
- prompt = topics_prompt
378
- shape = generate_gif(prompt)
379
- ai_asistant = animate_image(audio_file)
380
-
381
-
382
- return summary,evaluation,ai_asistant,shape
383
-
384
- # process_question()
385
-
386
- """#llm guard"""
387
-
388
-
389
-
390
- from transformers import AutoTokenizer, BitsAndBytesConfig, AutoModelForCausalLM
391
- import torch
392
-
393
- model_id = "meta-llama/LlamaGuard-7b"
394
- guard_tokenizer = AutoTokenizer.from_pretrained(model_id)
395
-
396
- bnb_config_guard = BitsAndBytesConfig(
397
- load_in_4bit=True,
398
- bnb_4bit_use_double_quant=True,
399
- bnb_4bit_quant_type="nf4",
400
- bnb_4bit_compute_dtype=torch.bfloat16,
401
- # Allow offloading to CPU for parts of the model
402
- load_in_8bit_fp32_cpu_offload=True
403
- )
404
- guard_model = AutoModelForCausalLM.from_pretrained(
405
- model_id,
406
- quantization_config=bnb_config_guard,
407
- torch_dtype=torch.bfloat16,
408
- device_map="auto",
409
- )
410
-
411
- def moderate_with_template(chat):
412
- input_ids = guard_tokenizer.apply_chat_template(chat, return_tensors="pt")
413
- output = guard_model.generate(input_ids=input_ids, max_new_tokens=100, pad_token_id=0)
414
- prompt_len = input_ids.shape[-1]
415
- return guard_tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
416
-
417
- def invoking(question):
418
- return query_rag_chain.invoke(question)
419
-
420
- def answer_question(question):
421
-
422
- # Check if the question is safe using Llama guard
423
- chat = [ {"role": "user", "content": question} ]
424
-
425
- if not moderate_with_template(chat) == 'safe':
426
- return "I'm sorry, but I can't respond to that question as it may contain inappropriate content."
427
-
428
- ai_msg = invoking(question) # Generate AI response
429
-
430
-
431
- system_response = [
432
- {"role": "user", "content": question},
433
- {"role": "assistant", "content": ai_msg},
434
- ]
435
- if not moderate_with_template(system_response) == 'safe':
436
- return "I generated a response, but it may contain inappropriate content. Let me try again with a more appropriate answer."
437
- else:
438
- return ai_msg
439
-
440
- # answer_question("how to kill everybody")
441
-
442
- """# 🤖 *AI* assistent"""
443
-
444
-
445
- # Commented out IPython magic to ensure Python compatibility.
446
- !update-alternatives --install /usr/local/bin/python3 python3 /usr/bin/python3.8 2
447
- !update-alternatives --install /usr/local/bin/python3 python3 /usr/bin/python3.9 1
448
- !sudo apt install python3.8
449
-
450
- !sudo apt-get install python3.8-distutils
451
-
452
- !python --version
453
-
454
- !apt-get update
455
-
456
- !apt install software-properties-common
457
-
458
- !sudo dpkg --remove --force-remove-reinstreq python3-pip python3-setuptools python3-wheel
459
-
460
- !apt-get install python3-pip
461
-
462
- print('Git clone project and install requirements...')
463
- !git clone https://github.com/Winfredy/SadTalker &> /dev/null
464
- # %cd SadTalker
465
- !export PYTHONPATH=/content/SadTalker:$PYTHONPATH
466
- !python3.8 -m pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
467
- !apt update
468
- !apt install ffmpeg &> /dev/null
469
- !python3.8 -m pip install -r requirements.txt
470
-
471
- print('Download pre-trained models...')
472
- !rm -rf checkpoints
473
- !bash scripts/download_models.sh
474
-
475
- """# ⛳ 3D Shape"""
476
-
477
- # Commented out IPython magic to ensure Python compatibility.
478
- !git clone https://github.com/openai/shap-e
479
- # %cd shap-e
480
-
481
-
482
- import torch
483
- from shap_e.diffusion.sample import sample_latents
484
- from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
485
- from shap_e.models.download import load_model, load_config
486
- from shap_e.util.notebooks import create_pan_cameras, decode_latent_images, gif_widget
487
-
488
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
489
-
490
- import imageio
491
- import os
492
- import hashlib
493
-
494
- def generate_gif(prompt):
495
- # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
496
-
497
- # Load models and diffusion configuration
498
- xm = load_model('transmitter', device=device)
499
- model = load_model('text300M', device=device)
500
- diffusion = diffusion_from_config(load_config('diffusion'))
501
-
502
- # Generate latents
503
- batch_size = 1
504
- guidance_scale = 8.95
505
- render_mode = 'nerf'
506
- size = 128
507
-
508
- latents = sample_latents(
509
- batch_size=batch_size,
510
- model=model,
511
- diffusion=diffusion,
512
- guidance_scale=guidance_scale,
513
- model_kwargs=dict(texts=[prompt] * batch_size),
514
- progress=True,
515
- clip_denoised=True,
516
- use_fp16=True,
517
- use_karras=True,
518
- karras_steps=64,
519
- sigma_min=1e-3,
520
- sigma_max=160,
521
- s_churn=0,
522
- )
523
-
524
- # Create cameras
525
- cameras = create_pan_cameras(size, device)
526
-
527
- # Render images and create GIF
528
- for i, latent in enumerate(latents):
529
- images = decode_latent_images(xm, latent, cameras, rendering_mode=render_mode)
530
-
531
- # Ensure the directory exists
532
- gif_dir = "generated_gifs"
533
- os.makedirs(gif_dir, exist_ok=True)
534
-
535
- # Generate a short, unique file name using a hash of the prompt
536
- prompt_hash = hashlib.md5(prompt.encode()).hexdigest()[:10]
537
- gif_path = os.path.join(gif_dir, f"{prompt_hash}.gif")
538
-
539
- # Save the images as a GIF
540
- imageio.mimsave(gif_path, images, fps=10) # Save images as GIF
541
-
542
- return gif_path
543
-
544
-
545
-
546
- """#big ⛏ func"""
547
-
548
- import ipywidgets as widgets
549
- import glob
550
- import matplotlib.pyplot as plt
551
- from IPython.display import display, HTML
552
- from base64 import b64encode
553
- import os
554
- import sys
555
- import subprocess
556
-
557
- from google.colab import drive
558
- drive.mount('/content/drive')
559
-
560
- import os
561
- import subprocess
562
- import glob
563
-
564
- def animate_image(audio_file):
565
- # Display the selected image (optional if using in Gradio)
566
- img_path = '/content/drive/MyDrive/img_9.png'
567
- # print(f"Image Has Been Seleceted: ")
568
-
569
- # Run the animation generation script
570
- result = subprocess.run([
571
- "python3.8", "inference.py", "--driven_audio", audio_file,
572
- "--source_image", img_path, "--result_dir", "./results", "--still", "--preprocess", "full", "--enhancer", "gfpgan"
573
- ], capture_output=True, text=True)
574
-
575
- # Check for errors
576
- if result.stderr:
577
- print("Errors:", result.stderr, file=sys.stderr)
578
-
579
- # Find the generated video file
580
- mp4_files = glob.glob('./results/*.mp4')
581
-
582
- if mp4_files:
583
- mp4_path = mp4_files[0]
584
- print(f"Generated animation: {mp4_path}")
585
- return mp4_path
586
- else:
587
- print("No results found.")
588
- return None
589
-
590
- """# 🚀 Gradio"""
591
-
592
- import gradio as gr
593
-
594
- with gr.Blocks() as demo:
595
- gr.Markdown("## Summarization and Animation Tool")
596
-
597
- with gr.Row():
598
- with gr.Column():
599
- input_file = gr.File(label="Upload File", type='filepath')
600
- summary = gr.Textbox(label="Summary", lines=3)
601
- # evaluation_summary = gr.Textbox(label="Evaluation Summary", lines=3)
602
- animation_video = gr.Video(label="Animation Video")
603
- shape = gr.Image(label="3D Shape GIF")
604
- question = gr.Textbox(label="Question", lines=3)
605
- answer = gr.Textbox(label="Answer", lines=3)
606
-
607
-
608
- summarize_button = gr.Button("Summarize")
609
- summarize_button.click(process_question, inputs=input_file, outputs=[summary,animation_video,shape])
610
-
611
-
612
- question_button = gr.Button("Ask Question")
613
- question_button.click(lambda q: answer_question(q.strip()), inputs=[question], outputs=[answer])
614
-
615
- demo.launch(debug=True)
616
-
617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import os
3
+ from langchain_community.document_loaders import PyPDFLoader
4
  from transformers import BitsAndBytesConfig, pipeline
 
5
  from langchain_core.prompts import ChatPromptTemplate
6
  from langchain_core.output_parsers import StrOutputParser
7
+ from io import BytesIO
8
+ import time
9
 
10
+ # Make sure to set the environment variables or load them from a .env file
11
+ os.environ['TOGETHER_API_KEY'] = 'your_together_api_key'
12
+ os.environ['PINECONE_API_KEY'] = 'your_pinecone_api_key'
13
+ ELEVENLABS_API_KEY = 'your_elevenlabs_api_key'
14
 
15
+ # Define the summarization chain
16
+ summary_prompt = """
17
+ You are an expert AI summarization model tasked with creating a comprehensive summary for 10 years old kids of the provided context. The summary should be approximately one page long and well-structured.
18
 
19
  this is the context:
20
  ```{context}```
 
33
  ### Conclusion
34
  - Suggest any potential actions, solutions, or recommendations.
35
 
 
 
36
  this is the summary:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  """
38
+ summary_prompt_template = ChatPromptTemplate.from_template(summary_prompt)
39
 
40
+ # Define the PDF extraction function
 
 
41
  def extract_text_from_pdf(file):
42
  loader = PyPDFLoader(file)
43
  pages = loader.load_and_split()
44
+ pc.from_documents(pages, index_name='learnverse', embedding=em)
45
+
46
  text = ""
47
  for page in pages:
48
+ text += page.page_content
 
49
  return text
50
 
51
+ # Define the text-to-speech function
52
+ def text_to_speech_stream(text):
53
+ client = ElevenLabs(api_key=ELEVENLABS_API_KEY)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  response = client.text_to_speech.convert(
55
  voice_id="jBpfuIE2acCO8z3wKNLl",
56
  optimize_streaming_latency="0",
 
71
  audio_data.write(chunk)
72
 
73
  audio_data.seek(0)
 
 
74
  if not os.path.exists('samples'):
75
  os.makedirs('samples')
76
 
 
77
  with open('samples/output.mp3', 'wb') as f:
78
  f.write(audio_data.read())
79
 
80
  return 'samples/output.mp3'
81
 
82
+ # Define the evaluation function
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  def evaluate_summary(generated_summary):
84
+ wandb.init(project="learnverse")
85
+
86
+ reference_summaries = ["Reference summary 1...", "Reference summary 2...", "Reference summary 3..."]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  rouge = Rouge()
88
+
89
+ rouge_1, rouge_2, rouge_l = {'r': 0, 'p': 0, 'f': 0}, {'r': 0, 'p': 0, 'f': 0}, {'r': 0, 'p': 0, 'f': 0}
90
+
 
 
 
 
 
91
  for reference in reference_summaries:
92
  scores = rouge.get_scores(generated_summary, reference)
 
 
93
  rouge_1['r'] += scores[0]['rouge-1']['r']
94
  rouge_1['p'] += scores[0]['rouge-1']['p']
95
  rouge_1['f'] += scores[0]['rouge-1']['f']
 
96
  rouge_2['r'] += scores[0]['rouge-2']['r']
97
  rouge_2['p'] += scores[0]['rouge-2']['p']
98
  rouge_2['f'] += scores[0]['rouge-2']['f']
 
99
  rouge_l['r'] += scores[0]['rouge-l']['r']
100
  rouge_l['p'] += scores[0]['rouge-l']['p']
101
  rouge_l['f'] += scores[0]['rouge-l']['f']
102
+
 
 
 
 
 
 
 
103
  num_references = len(reference_summaries)
104
  rouge_1 = {key: value / num_references for key, value in rouge_1.items()}
105
  rouge_2 = {key: value / num_references for key, value in rouge_2.items()}
106
  rouge_l = {key: value / num_references for key, value in rouge_l.items()}
107
+
 
 
 
 
 
 
 
 
 
 
 
 
108
  wandb.log(rouge_1)
109
  wandb.log(rouge_2)
110
  wandb.log(rouge_l)
 
 
 
 
 
111
  wandb.finish()
112
+
113
+ return {'ROUGE-1': rouge_1, 'ROUGE-2': rouge_2, 'ROUGE-L': rouge_l}
 
 
 
 
 
114
 
115
+ # Define the main processing function
116
  def process_question(file):
 
 
 
 
 
117
  pdffile = extract_text_from_pdf(file)
118
  three_topics = topic_chain.invoke({"context": pdffile})
 
 
 
119
  summary = summary_pdf_chain.invoke(pdffile)
 
 
 
 
120
  evaluation = evaluate_summary(summary)
 
 
 
 
121
  audio_file = text_to_speech_stream(summary)
122
+ return summary, evaluation, audio_file
123
+
124
+ # Define the Gradio interface
125
+ def gradio_interface(file):
126
+ summary, evaluation, audio_file = process_question(file)
127
+ return summary, evaluation, audio_file
128
+
129
+ # Launch the Gradio app
130
+ gr.Interface(
131
+ fn=gradio_interface,
132
+ inputs=gr.File(type="file", label="Upload PDF"),
133
+ outputs=[gr.Textbox(label="Summary"), gr.Textbox(label="Evaluation"), gr.Audio(label="Generated Audio")]
134
+ ).launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135