Upload demo.py
Browse files
demo.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""demo.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/19sodc0ANzqRgZ0VzMGXr4YQ3fvUvxyjv
|
8 |
+
"""
|
9 |
+
|
10 |
+
!pip install gradio --quiet
|
11 |
+
!pip install transformers --quiet
|
12 |
+
|
13 |
+
# Use a pipeline as a high-level helper
|
14 |
+
from transformers import pipeline
|
15 |
+
|
16 |
+
sentiment_analysis = pipeline("text-classification", model="avichr/heBERT_sentiment_analysis")
|
17 |
+
def analyze_sentiment(text):
|
18 |
+
results = sentiment_analysis(text)
|
19 |
+
for result in results:
|
20 |
+
print(f"Label: {result['label']}, Score: {result['score']}")
|
21 |
+
|
22 |
+
texts = [
|
23 |
+
"Worst rental I ever got"
|
24 |
+
"I really enjoyed my stay !"
|
25 |
+
|
26 |
+
]
|
27 |
+
|
28 |
+
analyze_sentiment(texts)
|
29 |
+
|
30 |
+
!pip install gradio
|
31 |
+
|
32 |
+
import gradio as gr
|
33 |
+
from transformers import pipeline
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
interface = gr.Interface(
|
38 |
+
fn=analyze_sentiment,
|
39 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your review or statement here..."),
|
40 |
+
outputs=[
|
41 |
+
gr.Textbox(label="Sentiment"),
|
42 |
+
gr.Number(label="Score")
|
43 |
+
],
|
44 |
+
title="Sentiment Analysis Score"
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
interface.launch()
|