ShowUI / app_legacy.py
h-siyuan's picture
Upload folder using huggingface_hub
0469e08 verified
import base64
import gradio as gr
import torch
from PIL import Image, ImageDraw
from qwen_vl_utils import process_vision_info
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
import ast
import os
from datetime import datetime
import numpy as np
# Function to draw a point on the image
def draw_point(image_input, point=None, radius=5):
if isinstance(image_input, str):
image = Image.open(image_input)
else:
image = Image.fromarray(np.uint8(image_input))
if point:
x, y = point[0] * image.width, point[1] * image.height
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red')
return image
# Function to save the uploaded image and return its path
def array_to_image_path(image_array):
if image_array is None:
raise ValueError("No image provided. Please upload an image before submitting.")
img = Image.fromarray(np.uint8(image_array))
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"image_{timestamp}.png"
img.save(filename)
return os.path.abspath(filename)
# Load the model
model = Qwen2VLForConditionalGeneration.from_pretrained(
# "./showui-2b",
"/users/difei/siyuan/showui_demo/showui-2b",
torch_dtype=torch.bfloat16,
device_map="auto",
# verbose=True,
)
# Define minimum and maximum pixel thresholds
min_pixels = 256 * 28 * 28
max_pixels = 1344 * 28 * 28
# Load the processor
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels)
# Hugging Face Space description
DESCRIPTION = "[ShowUI-2B Demo](https://huggingface.co/showlab/ShowUI-2B)"
# Define the system instruction
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1."
# Define the main function for inference
def run_showui(image, query):
image_path = array_to_image_path(image)
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": _SYSTEM},
{"type": "image", "image": image_path, "min_pixels": min_pixels, "max_pixels": max_pixels},
{"type": "text", "text": query}
],
}
]
# Prepare inputs for the model
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt"
)
inputs = inputs.to("cuda")
# Generate output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)[0]
# Parse the output into coordinates
click_xy = ast.literal_eval(output_text)
# Draw the point on the image
result_image = draw_point(image_path, click_xy, radius=10)
return result_image, str(click_xy)
with open("./assets/showui.png", "rb") as image_file:
base64_image = base64.b64encode(image_file.read()).decode("utf-8")
# Gradio UI
with gr.Blocks() as demo:
gr.HTML(
f"""
<div style="text-align: center; margin-bottom: 20px;">
<a href="https://github.com/showlab/ShowUI" target="_blank">
<img src="data:image/png;base64,{base64_image}" alt="ShowUI Logo" style="width: 200px; height: auto;"/>
</a>
</div>
"""
)
gr.Markdown(DESCRIPTION)
with gr.Tab(label="ShowUI-2B Input"):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Screenshot")
text_input = gr.Textbox(label="Query (e.g., 'Click Nahant')")
submit_btn = gr.Button(value="Submit")
with gr.Column():
output_img = gr.Image(label="Output Image")
output_coords = gr.Textbox(label="Clickable Coordinates")
submit_btn.click(run_showui, [input_img, text_input], [output_img, output_coords])
demo.queue(api_open=False)
demo.launch()