Spaces:
Running
on
Zero
Running
on
Zero
import base64 | |
import gradio as gr | |
import torch | |
from PIL import Image, ImageDraw | |
from qwen_vl_utils import process_vision_info | |
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
import ast | |
import os | |
from datetime import datetime | |
import numpy as np | |
# Function to draw a point on the image | |
def draw_point(image_input, point=None, radius=5): | |
if isinstance(image_input, str): | |
image = Image.open(image_input) | |
else: | |
image = Image.fromarray(np.uint8(image_input)) | |
if point: | |
x, y = point[0] * image.width, point[1] * image.height | |
ImageDraw.Draw(image).ellipse((x - radius, y - radius, x + radius, y + radius), fill='red') | |
return image | |
# Function to save the uploaded image and return its path | |
def array_to_image_path(image_array): | |
if image_array is None: | |
raise ValueError("No image provided. Please upload an image before submitting.") | |
img = Image.fromarray(np.uint8(image_array)) | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
filename = f"image_{timestamp}.png" | |
img.save(filename) | |
return os.path.abspath(filename) | |
# Load the model | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
# "./showui-2b", | |
"/users/difei/siyuan/showui_demo/showui-2b", | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
# verbose=True, | |
) | |
# Define minimum and maximum pixel thresholds | |
min_pixels = 256 * 28 * 28 | |
max_pixels = 1344 * 28 * 28 | |
# Load the processor | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels) | |
# Hugging Face Space description | |
DESCRIPTION = "[ShowUI-2B Demo](https://huggingface.co/showlab/ShowUI-2B)" | |
# Define the system instruction | |
_SYSTEM = "Based on the screenshot of the page, I give a text description and you give its corresponding location. The coordinate represents a clickable location [x, y] for an element, which is a relative coordinate on the screenshot, scaled from 0 to 1." | |
# Define the main function for inference | |
def run_showui(image, query): | |
image_path = array_to_image_path(image) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": _SYSTEM}, | |
{"type": "image", "image": image_path, "min_pixels": min_pixels, "max_pixels": max_pixels}, | |
{"type": "text", "text": query} | |
], | |
} | |
] | |
# Prepare inputs for the model | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
image_inputs, video_inputs = process_vision_info(messages) | |
inputs = processor( | |
text=[text], | |
images=image_inputs, | |
videos=video_inputs, | |
padding=True, | |
return_tensors="pt" | |
) | |
inputs = inputs.to("cuda") | |
# Generate output | |
generated_ids = model.generate(**inputs, max_new_tokens=128) | |
generated_ids_trimmed = [ | |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
] | |
output_text = processor.batch_decode( | |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
)[0] | |
# Parse the output into coordinates | |
click_xy = ast.literal_eval(output_text) | |
# Draw the point on the image | |
result_image = draw_point(image_path, click_xy, radius=10) | |
return result_image, str(click_xy) | |
with open("./assets/showui.png", "rb") as image_file: | |
base64_image = base64.b64encode(image_file.read()).decode("utf-8") | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.HTML( | |
f""" | |
<div style="text-align: center; margin-bottom: 20px;"> | |
<a href="https://github.com/showlab/ShowUI" target="_blank"> | |
<img src="data:image/png;base64,{base64_image}" alt="ShowUI Logo" style="width: 200px; height: auto;"/> | |
</a> | |
</div> | |
""" | |
) | |
gr.Markdown(DESCRIPTION) | |
with gr.Tab(label="ShowUI-2B Input"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Screenshot") | |
text_input = gr.Textbox(label="Query (e.g., 'Click Nahant')") | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_img = gr.Image(label="Output Image") | |
output_coords = gr.Textbox(label="Clickable Coordinates") | |
submit_btn.click(run_showui, [input_img, text_input], [output_img, output_coords]) | |
demo.queue(api_open=False) | |
demo.launch() | |