File size: 14,312 Bytes
4c02d9f 9eb10ea f52e5d3 a1b6a1f dd1c221 a1b6a1f 4c02d9f 163b105 4c02d9f cf63466 9eb10ea 4c02d9f 9eb10ea 24be272 9eb10ea 4c02d9f e7cd7fe 4c02d9f e0bff37 4c02d9f e0bff37 4c02d9f 54dd126 4c02d9f 125d6ce 4c02d9f 125d6ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
import gradio as gr
import nltk
from PIL import Image
import os
from IndicPhotoOCR.ocr import OCR # Ensure OCR class is saved in a file named ocr.py
from IndicPhotoOCR.theme import Seafoam
import numpy as np
import torch
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
)
from IndicTransToolkit import IndicProcessor
import torch
DEVICE = "cpu"
# Initialize the OCR object for text detection and recognition
ocr = OCR(device="cpu", verbose=False)
def translate(given_str,lang):
model_name = "ai4bharat/indictrans2-en-indic-1B" if lang=="english" else "ai4bharat/indictrans2-indic-en-1B"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, trust_remote_code=True)
ip = IndicProcessor(inference=True)
model = model.to(DEVICE)
model.eval()
src_lang, tgt_lang = ("eng_Latn", "hin_Deva") if lang=="english" else ("hin_Deva", "eng_Latn" )
batch = ip.preprocess_batch(
[given_str],
src_lang=src_lang,
tgt_lang=tgt_lang,
)
inputs = tokenizer(
batch,
truncation=True,
padding="longest",
return_tensors="pt",
return_attention_mask=True,
).to(DEVICE)
with torch.no_grad():
generated_tokens = model.generate(
**inputs,
use_cache=True,
min_length=0,
max_length=256,
num_beams=5,
num_return_sequences=1,
)
# Decode the generated tokens into text
with tokenizer.as_target_tokenizer():
generated_tokens = tokenizer.batch_decode(
generated_tokens.detach().cpu().tolist(),
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
translation = ip.postprocess_batch(generated_tokens, lang=tgt_lang)[0]
return translation
def detect_para(bbox_dict):
alpha1 = 0.2
alpha2 = 0.7
beta1 = 0.4
data = bbox_dict
word_crops = list(data.keys())
for i in word_crops:
data[i]["x1"], data[i]["y1"], data[i]["x2"], data[i]["y2"] = data[i]["bbox"]
data[i]["xc"] = (data[i]["x1"] + data[i]["x2"]) / 2
data[i]["yc"] = (data[i]["y1"] + data[i]["y2"]) / 2
data[i]["w"] = data[i]["x2"] - data[i]["x1"]
data[i]["h"] = data[i]["y2"] - data[i]["y1"]
patch_info = {}
while word_crops:
img_name = word_crops[0].split("_")[0]
word_crop_collection = [
word_crop for word_crop in word_crops if word_crop.startswith(img_name)
]
centroids = {}
lines = []
img_word_crops = word_crop_collection.copy()
para = []
while img_word_crops:
clusters = []
para_words_group = [
img_word_crops[0],
]
added = [
img_word_crops[0],
]
img_word_crops.remove(img_word_crops[0])
## determining the paragraph
while added:
word_crop = added.pop()
for i in range(len(img_word_crops)):
word_crop_ = img_word_crops[i]
if (
abs(data[word_crop_]["yc"] - data[word_crop]["yc"])
< data[word_crop]["h"] * alpha1
):
if data[word_crop]["xc"] > data[word_crop_]["xc"]:
if (data[word_crop]["x1"] - data[word_crop_]["x2"]) < data[
word_crop
]["h"] * alpha2:
para_words_group.append(word_crop_)
added.append(word_crop_)
else:
if (data[word_crop_]["x1"] - data[word_crop]["x2"]) < data[
word_crop
]["h"] * alpha2:
para_words_group.append(word_crop_)
added.append(word_crop_)
else:
if data[word_crop]["yc"] > data[word_crop_]["yc"]:
if (data[word_crop]["y1"] - data[word_crop_]["y2"]) < data[
word_crop
]["h"] * beta1 and (
(
(data[word_crop_]["x1"] < data[word_crop]["x2"])
and (data[word_crop_]["x1"] > data[word_crop]["x1"])
)
or (
(data[word_crop_]["x2"] < data[word_crop]["x2"])
and (data[word_crop_]["x2"] > data[word_crop]["x1"])
)
or (
(data[word_crop]["x1"] > data[word_crop_]["x1"])
and (data[word_crop]["x2"] < data[word_crop_]["x2"])
)
):
para_words_group.append(word_crop_)
added.append(word_crop_)
else:
if (data[word_crop_]["y1"] - data[word_crop]["y2"]) < data[
word_crop
]["h"] * beta1 and (
(
(data[word_crop_]["x1"] < data[word_crop]["x2"])
and (data[word_crop_]["x1"] > data[word_crop]["x1"])
)
or (
(data[word_crop_]["x2"] < data[word_crop]["x2"])
and (data[word_crop_]["x2"] > data[word_crop]["x1"])
)
or (
(data[word_crop]["x1"] > data[word_crop_]["x1"])
and (data[word_crop]["x2"] < data[word_crop_]["x2"])
)
):
para_words_group.append(word_crop_)
added.append(word_crop_)
img_word_crops = [p for p in img_word_crops if p not in para_words_group]
## processing for the line
while para_words_group:
line_words_group = [
para_words_group[0],
]
added = [
para_words_group[0],
]
para_words_group.remove(para_words_group[0])
## determining the line
while added:
word_crop = added.pop()
for i in range(len(para_words_group)):
word_crop_ = para_words_group[i]
if (
abs(data[word_crop_]["yc"] - data[word_crop]["yc"])
< data[word_crop]["h"] * alpha1
):
if data[word_crop]["xc"] > data[word_crop_]["xc"]:
if (data[word_crop]["x1"] - data[word_crop_]["x2"]) < data[
word_crop
]["h"] * alpha2:
line_words_group.append(word_crop_)
added.append(word_crop_)
else:
if (data[word_crop_]["x1"] - data[word_crop]["x2"]) < data[
word_crop
]["h"] * alpha2:
line_words_group.append(word_crop_)
added.append(word_crop_)
para_words_group = [
p for p in para_words_group if p not in line_words_group
]
xc = [data[word_crop]["xc"] for word_crop in line_words_group]
idxs = np.argsort(xc)
patch_cluster_ = [line_words_group[i] for i in idxs]
line_words_group = patch_cluster_
x1 = [data[word_crop]["x1"] for word_crop in line_words_group]
x2 = [data[word_crop]["x2"] for word_crop in line_words_group]
y1 = [data[word_crop]["y1"] for word_crop in line_words_group]
y2 = [data[word_crop]["y2"] for word_crop in line_words_group]
txt_line = [data[word_crop]["txt"] for word_crop in line_words_group]
txt = " ".join(txt_line)
x = [x1[0]]
y1_ = [y1[0]]
y2_ = [y2[0]]
l = [len(txt_l) for txt_l in txt_line]
for i in range(1, len(x1)):
x.append((x1[i] + x2[i - 1]) / 2)
y1_.append((y1[i] + y1[i - 1]) / 2)
y2_.append((y2[i] + y2[i - 1]) / 2)
x.append(x2[-1])
y1_.append(y1[-1])
y2_.append(y2[-1])
line_info = {
"x": x,
"y1": y1_,
"y2": y2_,
"l": l,
"txt": txt,
"word_crops": line_words_group,
}
clusters.append(line_info)
y_ = [clusters[i]["y1"][0] for i in range(len(clusters))]
idxs = np.argsort(y_)
clusters_ = [clusters[i] for i in idxs]
txt = [clusters[i]["txt"] for i in idxs]
l = [len(t) for t in txt]
txt = " ".join(txt)
para_info = {"lines": clusters_, "l": l, "txt": txt}
para.append(para_info)
for word_crop in word_crop_collection:
word_crops.remove(word_crop)
return "\n".join([para[i]["txt"] for i in range(len(para))])
def process_image(image):
"""
Processes the uploaded image for text detection and recognition.
- Detects bounding boxes in the image
- Draws bounding boxes on the image and identifies script in each detected area
- Recognizes text in each cropped region and returns the annotated image and recognized text
Parameters:
image (PIL.Image): The input image to be processed.
Returns:
tuple: A PIL.Image with bounding boxes and a string of recognized text.
"""
# Save the input image temporarily
image_path = "input_image.jpg"
image.save(image_path)
# Detect bounding boxes on the image using OCR
detections = ocr.detect(image_path)
# Draw bounding boxes on the image and save it as output
ocr.visualize_detection(image_path, detections, save_path="output_image.png")
# Load the annotated image with bounding boxes drawn
output_image = Image.open("output_image.png")
# Initialize list to hold recognized text from each detected area
recognized_texts = {}
pil_image = Image.open(image_path)
script_lang = "english"
# Process each detected bounding box for script identification and text recognition
for id,bbox in enumerate(detections):
# Identify the script and crop the image to this region
script_lang, cropped_path = ocr.crop_and_identify_script(pil_image, bbox)
x1 = min([bbox[i][0] for i in range(len(bbox))])
y1 = min([bbox[i][1] for i in range(len(bbox))])
x2 = max([bbox[i][0] for i in range(len(bbox))])
y2 = max([bbox[i][1] for i in range(len(bbox))])
if script_lang:
recognized_text = ocr.recognise(cropped_path,script_lang)
recognized_texts[f"img_{id}"] = {"txt":recognized_text,"bbox":[x1,y1,x2,y2]}
translated = translate(detect_para(recognized_texts),script_lang)
# Combine recognized texts into a single string for display
return output_image,translated
# Custom HTML for interface header with logos and alignment
interface_html = """
<div style="text-align: left; padding: 10px;">
<div style="background-color: white; padding: 10px; display: inline-block;">
<img src="https://iitj.ac.in/images/logo/Design-of-New-Logo-of-IITJ-2.png" alt="IITJ Logo" style="width: 100px; height: 100px;">
</div>
<img src="https://play-lh.googleusercontent.com/_FXSr4xmhPfBykmNJvKvC0GIAVJmOLhFl6RA5fobCjV-8zVSypxX8yb8ka6zu6-4TEft=w240-h480-rw" alt="Bhashini Logo" style="width: 100px; height: 100px; float: right;">
</div>
"""
# Links to GitHub and Dataset repositories with GitHub icon
links_html = """
<div style="text-align: center; padding-top: 20px;">
<a href="https://github.com/Bhashini-IITJ/visualTranslation" target="_blank" style="margin-right: 20px; font-size: 18px; text-decoration: none;">
GitHub Repository
</a>
<a href="https://vl2g.github.io/projects/visTrans" target="_blank" style="font-size: 18px; text-decoration: none;">
Project Page
</a>
</div>
"""
# Custom CSS to style the text box font size
custom_css = """
.custom-textbox textarea {
font-size: 20px !important;
}
"""
# Create an instance of the Seafoam theme for a consistent visual style
seafoam = Seafoam()
# Define examples for users to try out
examples = [
["test_images/208.jpg"],
["test_images/1310.jpg"]
]
title = "<h1 style='text-align: center;'>Developed by IITJ</h1>"
# Set up the Gradio Interface with the defined function and customizations
demo = gr.Interface(
allow_flagging="never",
fn=process_image,
inputs=gr.Image(type="pil", image_mode="RGB"),
outputs=[
gr.Image(type="pil", label="Detected Bounding Boxes"),
gr.Textbox(label="Translated Text", elem_classes="custom-textbox")
],
title="IndicPhotoOCR - Indic Scene Text Recogniser Toolkit",
description=title+interface_html+links_html,
theme=seafoam,
css=custom_css,
examples=examples
)
# Server setup and launch configuration
# if __name__ == "__main__":
# server = "0.0.0.0" # IP address for server
# port = 7865 # Port to run the server on
# demo.launch(server_name=server, server_port=port)
demo.launch()
|