StableGarment / app.py
loooooong's picture
add preload and jemalloc, libiomp
3da33ea
raw
history blame
11.3 kB
# adapted from https://huggingface.co/spaces/HumanAIGC/OutfitAnyone/blob/main/app.py
import os
from os.path import join as opj
LD_PRELOAD = os.getenv("LD_PRELOAD")
os.environ["LD_PRELOAD"] = f"{LD_PRELOAD}:/usr/lib/x86_64-linux-gnu/libjemalloc.so"
os.environ["MALLOC_CONF"] = "oversize_threshold:1,background_thread:true,metadata_thp:auto,dirty_decay_ms: 60000,muzzy_decay_ms:60000"
LD_PRELOAD= os.getenv("LD_PRELOAD")
os.environ["LD_PRELOAD"] = f"{LD_PRELOAD}:/usr/lib/x86_64-linux-gnu/libjemalloc.so:/usr/lib/x86_64-linux-gnu/libiomp5.so"
os.environ["OMP_NUM_THREADS"] ==32
token = os.getenv("ACCESS_TOKEN")
os.system(f"python -m pip install git+https://{token}@github.com/logn-2024/StableGarment.git")
import torch
import spaces
import gradio as gr
from PIL import Image
import numpy as np
from torchvision import transforms
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import UniPCMultistepScheduler
from diffusers import AutoencoderKL
from diffusers import StableDiffusionPipeline
from diffusers.loaders import LoraLoaderMixin
import intel_extension_for_pytorch as ipex
from stablegarment.models import GarmentEncoderModel,ControlNetModel
from stablegarment.piplines import StableGarmentPipeline,StableGarmentControlNetPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cpu" else torch.float16
height = 512
width = 384
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(dtype=torch_dtype,device=device)
scheduler = UniPCMultistepScheduler.from_pretrained("runwayml/stable-diffusion-v1-5",subfolder="scheduler")
pretrained_garment_encoder_path = "loooooong/StableGarment_text2img"
garment_encoder = GarmentEncoderModel.from_pretrained(pretrained_garment_encoder_path,torch_dtype=torch_dtype,subfolder="garment_encoder")
garment_encoder = garment_encoder.to(device=device,dtype=torch_dtype)
pipeline_t2i = StableGarmentPipeline.from_pretrained(base_model_path, vae=vae, torch_dtype=torch_dtype,).to(device=device) # variant="fp16"
# pipeline = StableDiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V4.0_noVAE", vae=vae, torch_dtype=torch_dtype).to(device=device)
pipeline_t2i.scheduler = scheduler
if False: #device=="cpu":
# speed up for cpu
# to channels last
pipeline_t2i.unet = pipeline_t2i.unet.to(memory_format=torch.channels_last)
pipeline_t2i.vae = pipeline_t2i.vae.to(memory_format=torch.channels_last)
pipeline_t2i.text_encoder = pipeline_t2i.text_encoder.to(memory_format=torch.channels_last)
# pipeline_t2i.safety_checker = pipeline_t2i.safety_checker.to(memory_format=torch.channels_last)
# Create random input to enable JIT compilation
sample = torch.randn(2,4,64,64).type(torch_dtype)
timestep = torch.rand(1)*999
encoder_hidden_status = torch.randn(2,77,768).type(torch_dtype)
input_example = (sample, timestep, encoder_hidden_status)
# optimize with IPEX
pipeline_t2i.unet = ipex.optimize(pipeline_t2i.unet.eval(), dtype=torch.bfloat16, inplace=True, sample_input=input_example)
pipeline_t2i.vae = ipex.optimize(pipeline_t2i.vae.eval(), dtype=torch.bfloat16, inplace=True)
pipeline_t2i.text_encoder = ipex.optimize(pipeline_t2i.text_encoder.eval(), dtype=torch.bfloat16, inplace=True)
# pipeline_t2i.safety_checker = ipex.optimize(pipeline_t2i.safety_checker.eval(), dtype=torch.bfloat16, inplace=True)
pipeline_tryon = None
'''
# not ready
pretrained_model_path = "part_module_controlnet_imp2"
controlnet = ControlNetModel.from_pretrained(pretrained_model_path,subfolder="controlnet")
text_encoder = CLIPTextModel.from_pretrained(base_model_path, subfolder='text_encoder')
tokenizer = CLIPTokenizer.from_pretrained(base_model_path, subfolder='tokenizer')
pipeline_tryon = StableGarmentControlNetPipeline(
vae,
text_encoder,
tokenizer,
pipeline_t2i.unet,
controlnet,
scheduler,
).to(device=device,dtype=torch_dtype)
'''
def prepare_controlnet_inputs(agn_mask_list,densepose_list):
for i,agn_mask_img in enumerate(agn_mask_list):
agn_mask_img = np.array(agn_mask_img.convert("L"))
agn_mask_img = np.expand_dims(agn_mask_img, axis=-1)
agn_mask_img = (agn_mask_img >= 128).astype(np.float32) # 0 or 1
agn_mask_list[i] = 1. - agn_mask_img
densepose_list = [np.array(img)/255. for img in densepose_list]
controlnet_inputs = []
for mask,pose in zip(agn_mask_list,densepose_list):
controlnet_inputs.append(torch.tensor(np.concatenate([mask, pose], axis=-1)).permute(2,0,1))
controlnet_inputs = torch.stack(controlnet_inputs)
return controlnet_inputs
@spaces.GPU(enable_queue=True)
def tryon(prompt,init_image,garment_top,garment_down,):
basename = os.path.splitext(os.path.basename(init_image))[0]
image_agn = Image.open(opj(parse_dir,basename+"_agn.jpg")).resize((width,height))
image_agn_mask = Image.open(opj(parse_dir,basename+"_mask.png")).resize((width,height))
densepose_image = Image.open(opj(parse_dir,basename+"_densepose.png")).resize((width,height))
garment_top = Image.open(garment_top).resize((width,height))
garment_images = [garment_top,]
prompt = [prompt,]
cloth_prompt = ["",]
controlnet_condition = prepare_controlnet_inputs([image_agn_mask],[densepose_image])
images = pipeline_tryon(prompt, negative_prompt="",cloth_prompt=cloth_prompt, # negative_cloth_prompt = n_prompt,
height=height,width=width,num_inference_steps=25,guidance_scale=1.5,eta=0.0,
controlnet_condition=controlnet_condition,reference_image=garment_images,
garment_encoder=garment_encoder,condition_extra=image_agn,
generator=None,).images
return images[0]
@spaces.GPU(enable_queue=True)
def text2image(prompt,init_image,garment_top,garment_down,style_fidelity=1.):
garment_top = Image.open(garment_top).resize((width,height))
garment_top = transforms.CenterCrop((height,width))(transforms.Resize(max(height, width))(garment_top))
# always enable classifier-free-guidance as it is related to garment
cfg = 4 # if prompt else 0
garment_images = [garment_top,]
prompt = [prompt,]
cloth_prompt = ["",]
n_prompt = "nsfw, unsaturated, abnormal, unnatural, artifact"
negative_prompt = [n_prompt]
images = pipeline_t2i(prompt,negative_prompt=negative_prompt,cloth_prompt=cloth_prompt,height=height,width=width,
num_inference_steps=30,guidance_scale=cfg,num_images_per_prompt=1,style_fidelity=style_fidelity,
garment_encoder=garment_encoder,garment_image=garment_images,).images
return images[0]
# def text2image(prompt,init_image,garment_top,garment_down,):
# return pipeline(prompt).images[0]
def infer(prompt,init_image,garment_top,garment_down,t2i_only,style_fidelity):
if t2i_only:
return text2image(prompt,init_image,garment_top,garment_down,style_fidelity)
else:
return tryon(prompt,init_image,garment_top,garment_down)
init_state,prompt_state = None,""
t2i_only_state = True
def set_mode(t2i_only,person_condition,prompt):
global init_state, prompt_state, t2i_only_state
t2i_only_state = not t2i_only_state
init_state, prompt_state = person_condition or init_state, prompt_state or prompt
if t2i_only:
return [gr.Image(sources='clipboard', type="filepath", label="model",value=None, interactive=False),
gr.Textbox(placeholder="", label="prompt(for t2i)", value=prompt_state, interactive=True),
]
else:
return [gr.Image(sources='clipboard', type="filepath", label="model",value=init_state, interactive=False),
gr.Textbox(placeholder="", label="prompt(for t2i)", value="", interactive=False),
]
def example_fn(inputs,):
if t2i_only_state:
return gr.Image(sources='clipboard', type="filepath", label="model", value=None, interactive=False)
return gr.Image(sources='clipboard', type="filepath", label="model",value=inputs, interactive=False)
gr.set_static_paths(paths=["assets/images/model"])
model_dir = opj(os.path.dirname(__file__), "assets/images/model")
garment_dir = opj(os.path.dirname(__file__), "assets/images/garment")
parse_dir = opj(os.path.dirname(__file__), "assets/images/image_parse")
model = opj(model_dir, "13987_00.jpg")
all_person = [opj(model_dir,fname) for fname in os.listdir(model_dir) if fname.endswith(".jpg")]
with gr.Blocks(css = ".output-image, .input-image, .image-preview {height: 400px !important} ", ) as gradio_app:
gr.Markdown("# StableGarment")
with gr.Row():
with gr.Column():
init_image = gr.Image(sources='clipboard', type="filepath", label="model", value=None, interactive=False)
example = gr.Examples(inputs=gr.Image(visible=False), #init_image,
examples_per_page=4,
examples=all_person,
run_on_click=True,
outputs=init_image,
fn=example_fn,)
with gr.Column():
with gr.Row():
images_top = [opj(garment_dir,fname) for fname in os.listdir(garment_dir) if fname.endswith(".jpg")]
garment_top = gr.Image(sources='upload', type="filepath", label="top garment",value=images_top[0]) # ,interactive=False
example_top = gr.Examples(inputs=garment_top,
examples_per_page=4,
examples=images_top)
images_down = []
garment_down = gr.Image(sources='upload', type="filepath", label="lower garment",interactive=False, visible=False)
example_down = gr.Examples(inputs=garment_down,
examples_per_page=4,
examples=images_down)
prompt = gr.Textbox(placeholder="", label="prompt(for t2i)",) # interactive=False
with gr.Row():
t2i_only = gr.Checkbox(label="t2i with garment", info="Only text and garment.", elem_id="t2i_switch", value=True, interactive=False,)
run_button = gr.Button(value="Run")
t2i_only.change(fn=set_mode,inputs=[t2i_only,init_image,prompt],outputs=[init_image,prompt,])
with gr.Accordion("advance options", open=False):
gr.Markdown("Garment fidelity control(Tune down it to reduce white edge).")
style_fidelity = gr.Slider(0, 1, value=1, label="fidelity(only for t2i)") # , info=""
with gr.Column():
gallery = gr.Image()
run_button.click(fn=infer,
inputs=[
prompt,
init_image,
garment_top,
garment_down,
t2i_only,
style_fidelity,
],
outputs=[gallery],)
if __name__ == "__main__":
gradio_app.launch()