|
import glob |
|
import random |
|
import os |
|
import soundfile as sf |
|
import streamlit as st |
|
from pydub import AudioSegment |
|
|
|
from modules.diarization.nemo_diarization import diarization |
|
|
|
st.title('Call Transcription demo') |
|
st.subheader('This simple demo shows the possibilities of the ASR and NLP in the task of ' |
|
'automatic speech recognition and diarization. It works with mp3, ogg and wav files. You can randomly ' |
|
'pickup a set of images from the built-in database or try uploading your own files.') |
|
|
|
|
|
if st.button('Try random samples from the database'): |
|
folder = "data/datasets/crema_d_diarization_chunks" |
|
os.makedirs(folder, exist_ok=True) |
|
list_all_audio = glob.glob("data/datasets/crema_d_diarization_chunks/*.wav") |
|
chosen_files = sorted(random.sample(list_all_audio, 1)) |
|
file_name = os.path.basename(chosen_files[0]).split(".")[0] |
|
audio_file = open(chosen_files[0], 'rb') |
|
audio_bytes = audio_file.read() |
|
st.audio(audio_bytes) |
|
f = sf.SoundFile(chosen_files[0]) |
|
st.write("Starting transcription. Estimated processing time: %0.1f seconds" % (f.frames / (f.samplerate * 5))) |
|
result = diarization(chosen_files[0]) |
|
with open("info/transcripts/pred_rttms/" + file_name + ".txt") as f: |
|
transcript = f.read() |
|
st.write("Transcription completed.") |
|
st.write("Number of speakers: %s" % result[file_name]["speaker_count"]) |
|
st.write("Sentences: %s" % len(result[file_name]["sentences"])) |
|
st.write("Words: %s" % len(result[file_name]["words"])) |
|
st.download_button( |
|
label="Download audio transcript", |
|
data=transcript, |
|
file_name='transcript.txt', |
|
mime='text/csv', |
|
) |
|
|
|
uploaded_file = st.file_uploader("Choose your recording with a speech", |
|
accept_multiple_files=False, type=["mp3", "wav", "ogg"]) |
|
if uploaded_file is not None: |
|
folder = "data/user_data/" |
|
os.makedirs(folder, exist_ok=True) |
|
for f in glob.glob(folder + '*'): |
|
os.remove(f) |
|
save_path = folder + uploaded_file.name |
|
if ".mp3" in uploaded_file: |
|
sound = AudioSegment.from_mp3(uploaded_file) |
|
elif ".ogg" in uploaded_file: |
|
sound = AudioSegment.from_ogg(uploaded_file) |
|
else: |
|
sound = AudioSegment.from_wav(uploaded_file) |
|
sound.export(save_path, format="wav", parameters=["-ac", "1"]) |
|
file_name = os.path.basename(save_path).split(".")[0] |
|
audio_file = open(save_path, 'rb') |
|
audio_bytes = audio_file.read() |
|
st.audio(audio_bytes) |
|
f = sf.SoundFile(save_path) |
|
st.write("Starting transcription. Estimated processing time: %0.0f minutes and %02.0f seconds" |
|
% ((f.frames / (f.samplerate * 3) // 60), (f.frames / (f.samplerate * 3) % 60))) |
|
result = diarization(save_path) |
|
with open("info/transcripts/pred_rttms/" + file_name + ".txt") as f: |
|
transcript = f.read() |
|
st.write("Transcription completed.") |
|
st.write("Number of speakers: %s" % result[file_name]["speaker_count"]) |
|
st.write("Sentences: %s" % len(result[file_name]["sentences"])) |
|
st.write("Words: %s" % len(result[file_name]["words"])) |
|
st.download_button( |
|
label="Download audio transcript", |
|
data=transcript, |
|
file_name='transcript.txt', |
|
mime='text/csv', |
|
) |
|
|