Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
|
|
1 |
### 1. Imports and class names setup ###
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
import torch
|
5 |
|
6 |
-
|
7 |
from model import create_effnetb2_model
|
8 |
from timeit import default_timer as timer
|
9 |
from typing import Tuple, Dict
|
@@ -21,7 +21,7 @@ effnetb2, effnetb2_transforms = create_effnetb2_model(
|
|
21 |
# Load saved weights
|
22 |
effnetb2.load_state_dict(
|
23 |
torch.load(
|
24 |
-
f="
|
25 |
map_location=torch.device("cpu"), # load to CPU
|
26 |
)
|
27 |
)
|
@@ -55,22 +55,24 @@ def predict(img) -> Tuple[Dict, float]:
|
|
55 |
|
56 |
### 4. Gradio app ###
|
57 |
|
58 |
-
# import gradio as gr
|
59 |
-
# example_list = [["examples/" + example] for example in os.listdir("examples")]
|
60 |
# Create title, description and article strings
|
61 |
-
title = "
|
62 |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
|
63 |
-
article = "Created
|
|
|
|
|
|
|
64 |
|
65 |
# Create the Gradio demo
|
66 |
demo = gr.Interface(fn=predict, # mapping function from input to output
|
67 |
inputs=gr.Image(type="pil"), # what are the inputs?
|
68 |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
|
69 |
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
|
70 |
-
# examples
|
|
|
71 |
title=title,
|
72 |
description=description,
|
73 |
article=article)
|
74 |
|
75 |
# Launch the demo!
|
76 |
-
demo.launch(
|
|
|
1 |
+
%%writefile demos/foodvision_mini/app.py
|
2 |
### 1. Imports and class names setup ###
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
import torch
|
6 |
|
|
|
7 |
from model import create_effnetb2_model
|
8 |
from timeit import default_timer as timer
|
9 |
from typing import Tuple, Dict
|
|
|
21 |
# Load saved weights
|
22 |
effnetb2.load_state_dict(
|
23 |
torch.load(
|
24 |
+
f="09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth",
|
25 |
map_location=torch.device("cpu"), # load to CPU
|
26 |
)
|
27 |
)
|
|
|
55 |
|
56 |
### 4. Gradio app ###
|
57 |
|
|
|
|
|
58 |
# Create title, description and article strings
|
59 |
+
title = "FoodVision Mini ππ₯©π£"
|
60 |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
|
61 |
+
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
|
62 |
+
|
63 |
+
# Create examples list from "examples/" directory
|
64 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
65 |
|
66 |
# Create the Gradio demo
|
67 |
demo = gr.Interface(fn=predict, # mapping function from input to output
|
68 |
inputs=gr.Image(type="pil"), # what are the inputs?
|
69 |
outputs=[gr.Label(num_top_classes=3, label="Predictions"), # what are the outputs?
|
70 |
gr.Number(label="Prediction time (s)")], # our fn has two outputs, therefore we have two outputs
|
71 |
+
# Create examples list from "examples/" directory
|
72 |
+
examples=example_list,
|
73 |
title=title,
|
74 |
description=description,
|
75 |
article=article)
|
76 |
|
77 |
# Launch the demo!
|
78 |
+
demo.launch()
|