|
from typing import Dict, Optional, Tuple, Union |
|
import torch |
|
import torch.nn as nn |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.models.attention_processor import ( |
|
ADDED_KV_ATTENTION_PROCESSORS, |
|
CROSS_ATTENTION_PROCESSORS, |
|
Attention, |
|
AttentionProcessor, |
|
AttnAddedKVProcessor, |
|
AttnProcessor, |
|
) |
|
|
|
from diffusers.models.modeling_outputs import AutoencoderKLOutput |
|
from diffusers.models.modeling_utils import ModelMixin |
|
|
|
from timm.models.layers import drop_path, to_2tuple, trunc_normal_ |
|
from .modeling_enc_dec import ( |
|
DecoderOutput, DiagonalGaussianDistribution, |
|
CausalVaeDecoder, CausalVaeEncoder, |
|
) |
|
from .modeling_causal_conv import CausalConv3d |
|
from IPython import embed |
|
|
|
from utils import ( |
|
is_context_parallel_initialized, |
|
get_context_parallel_group, |
|
get_context_parallel_world_size, |
|
get_context_parallel_rank, |
|
get_context_parallel_group_rank, |
|
) |
|
|
|
from .context_parallel_ops import ( |
|
conv_scatter_to_context_parallel_region, |
|
conv_gather_from_context_parallel_region, |
|
) |
|
|
|
|
|
class CausalVideoVAE(ModelMixin, ConfigMixin): |
|
r""" |
|
A VAE model with KL loss for encoding images into latents and decoding latent representations into images. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented |
|
for all models (such as downloading or saving). |
|
|
|
Parameters: |
|
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. |
|
out_channels (int, *optional*, defaults to 3): Number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownEncoderBlock2D",)`): |
|
Tuple of downsample block types. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpDecoderBlock2D",)`): |
|
Tuple of upsample block types. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(64,)`): |
|
Tuple of block output channels. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. |
|
sample_size (`int`, *optional*, defaults to `32`): Sample input size. |
|
scaling_factor (`float`, *optional*, defaults to 0.18215): |
|
The component-wise standard deviation of the trained latent space computed using the first batch of the |
|
training set. This is used to scale the latent space to have unit variance when training the diffusion |
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the |
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 |
|
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image |
|
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. |
|
force_upcast (`bool`, *optional*, default to `True`): |
|
If enabled it will force the VAE to run in float32 for high image resolution pipelines, such as SD-XL. VAE |
|
can be fine-tuned / trained to a lower range without loosing too much precision in which case |
|
`force_upcast` can be set to `False` - see: https://huggingface.co/madebyollin/sdxl-vae-fp16-fix |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
|
|
encoder_in_channels: int = 3, |
|
encoder_out_channels: int = 4, |
|
encoder_layers_per_block: Tuple[int, ...] = (2, 2, 2, 2), |
|
encoder_down_block_types: Tuple[str, ...] = ( |
|
"DownEncoderBlockCausal3D", |
|
"DownEncoderBlockCausal3D", |
|
"DownEncoderBlockCausal3D", |
|
"DownEncoderBlockCausal3D", |
|
), |
|
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), |
|
encoder_spatial_down_sample: Tuple[bool, ...] = (True, True, True, False), |
|
encoder_temporal_down_sample: Tuple[bool, ...] = (True, True, True, False), |
|
encoder_block_dropout: Tuple[int, ...] = (0.0, 0.0, 0.0, 0.0), |
|
encoder_act_fn: str = "silu", |
|
encoder_norm_num_groups: int = 32, |
|
encoder_double_z: bool = True, |
|
encoder_type: str = 'causal_vae_conv', |
|
|
|
decoder_in_channels: int = 4, |
|
decoder_out_channels: int = 3, |
|
decoder_layers_per_block: Tuple[int, ...] = (3, 3, 3, 3), |
|
decoder_up_block_types: Tuple[str, ...] = ( |
|
"UpDecoderBlockCausal3D", |
|
"UpDecoderBlockCausal3D", |
|
"UpDecoderBlockCausal3D", |
|
"UpDecoderBlockCausal3D", |
|
), |
|
decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 512), |
|
decoder_spatial_up_sample: Tuple[bool, ...] = (True, True, True, False), |
|
decoder_temporal_up_sample: Tuple[bool, ...] = (True, True, True, False), |
|
decoder_block_dropout: Tuple[int, ...] = (0.0, 0.0, 0.0, 0.0), |
|
decoder_act_fn: str = "silu", |
|
decoder_norm_num_groups: int = 32, |
|
decoder_type: str = 'causal_vae_conv', |
|
sample_size: int = 256, |
|
scaling_factor: float = 0.18215, |
|
add_post_quant_conv: bool = True, |
|
interpolate: bool = False, |
|
downsample_scale: int = 8, |
|
): |
|
super().__init__() |
|
|
|
print(f"The latent dimmension channes is {encoder_out_channels}") |
|
|
|
|
|
self.encoder = CausalVaeEncoder( |
|
in_channels=encoder_in_channels, |
|
out_channels=encoder_out_channels, |
|
down_block_types=encoder_down_block_types, |
|
spatial_down_sample=encoder_spatial_down_sample, |
|
temporal_down_sample=encoder_temporal_down_sample, |
|
block_out_channels=encoder_block_out_channels, |
|
layers_per_block=encoder_layers_per_block, |
|
act_fn=encoder_act_fn, |
|
norm_num_groups=encoder_norm_num_groups, |
|
double_z=True, |
|
block_dropout=encoder_block_dropout, |
|
) |
|
|
|
|
|
self.decoder = CausalVaeDecoder( |
|
in_channels=decoder_in_channels, |
|
out_channels=decoder_out_channels, |
|
up_block_types=decoder_up_block_types, |
|
spatial_up_sample=decoder_spatial_up_sample, |
|
temporal_up_sample=decoder_temporal_up_sample, |
|
block_out_channels=decoder_block_out_channels, |
|
layers_per_block=decoder_layers_per_block, |
|
norm_num_groups=decoder_norm_num_groups, |
|
act_fn=decoder_act_fn, |
|
interpolate=interpolate, |
|
block_dropout=decoder_block_dropout, |
|
) |
|
|
|
self.quant_conv = CausalConv3d(2 * encoder_out_channels, 2 * encoder_out_channels, kernel_size=1, stride=1) |
|
self.post_quant_conv = CausalConv3d(encoder_out_channels, encoder_out_channels, kernel_size=1, stride=1) |
|
self.use_tiling = False |
|
|
|
|
|
self.tile_sample_min_size = self.config.sample_size |
|
|
|
sample_size = ( |
|
self.config.sample_size[0] |
|
if isinstance(self.config.sample_size, (list, tuple)) |
|
else self.config.sample_size |
|
) |
|
self.tile_latent_min_size = int(sample_size / downsample_scale) |
|
self.encode_tile_overlap_factor = 1 / 8 |
|
self.decode_tile_overlap_factor = 1 / 8 |
|
self.downsample_scale = downsample_scale |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Linear, nn.Conv2d, nn.Conv3d)): |
|
trunc_normal_(m.weight, std=.02) |
|
if m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, (nn.LayerNorm, nn.GroupNorm)): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (Encoder, Decoder)): |
|
module.gradient_checkpointing = value |
|
|
|
def enable_tiling(self, use_tiling: bool = True): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow |
|
processing larger images. |
|
""" |
|
self.use_tiling = use_tiling |
|
|
|
def disable_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing |
|
decoding in one step. |
|
""" |
|
self.enable_tiling(False) |
|
|
|
@property |
|
|
|
def attn_processors(self) -> Dict[str, AttentionProcessor]: |
|
r""" |
|
Returns: |
|
`dict` of attention processors: A dictionary containing all attention processors used in the model with |
|
indexed by its weight name. |
|
""" |
|
|
|
processors = {} |
|
|
|
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): |
|
if hasattr(module, "get_processor"): |
|
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) |
|
|
|
return processors |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_add_processors(name, module, processors) |
|
|
|
return processors |
|
|
|
|
|
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): |
|
r""" |
|
Sets the attention processor to use to compute attention. |
|
|
|
Parameters: |
|
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): |
|
The instantiated processor class or a dictionary of processor classes that will be set as the processor |
|
for **all** `Attention` layers. |
|
|
|
If `processor` is a dict, the key needs to define the path to the corresponding cross attention |
|
processor. This is strongly recommended when setting trainable attention processors. |
|
|
|
""" |
|
count = len(self.attn_processors.keys()) |
|
|
|
if isinstance(processor, dict) and len(processor) != count: |
|
raise ValueError( |
|
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" |
|
f" number of attention layers: {count}. Please make sure to pass {count} processor classes." |
|
) |
|
|
|
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): |
|
if hasattr(module, "set_processor"): |
|
if not isinstance(processor, dict): |
|
module.set_processor(processor) |
|
else: |
|
module.set_processor(processor.pop(f"{name}.processor")) |
|
|
|
for sub_name, child in module.named_children(): |
|
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) |
|
|
|
for name, module in self.named_children(): |
|
fn_recursive_attn_processor(name, module, processor) |
|
|
|
|
|
def set_default_attn_processor(self): |
|
""" |
|
Disables custom attention processors and sets the default attention implementation. |
|
""" |
|
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnAddedKVProcessor() |
|
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()): |
|
processor = AttnProcessor() |
|
else: |
|
raise ValueError( |
|
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}" |
|
) |
|
|
|
self.set_attn_processor(processor) |
|
|
|
def encode( |
|
self, x: torch.FloatTensor, return_dict: bool = True, |
|
is_init_image=True, temporal_chunk=False, window_size=16, tile_sample_min_size=256, |
|
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]: |
|
""" |
|
Encode a batch of images into latents. |
|
|
|
Args: |
|
x (`torch.FloatTensor`): Input batch of images. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
The latent representations of the encoded images. If `return_dict` is True, a |
|
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned. |
|
""" |
|
self.tile_sample_min_size = tile_sample_min_size |
|
self.tile_latent_min_size = int(tile_sample_min_size / self.downsample_scale) |
|
|
|
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): |
|
return self.tiled_encode(x, return_dict=return_dict, is_init_image=is_init_image, |
|
temporal_chunk=temporal_chunk, window_size=window_size) |
|
|
|
if temporal_chunk: |
|
moments = self.chunk_encode(x, window_size=window_size) |
|
else: |
|
h = self.encoder(x, is_init_image=is_init_image, temporal_chunk=False) |
|
moments = self.quant_conv(h, is_init_image=is_init_image, temporal_chunk=False) |
|
|
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
@torch.no_grad() |
|
def chunk_encode(self, x: torch.FloatTensor, window_size=16): |
|
|
|
|
|
num_frames = x.shape[2] |
|
assert (num_frames - 1) % self.downsample_scale == 0 |
|
init_window_size = window_size + 1 |
|
frame_list = [x[:,:,:init_window_size]] |
|
|
|
|
|
full_chunk_size = (num_frames - init_window_size) // window_size |
|
fid = init_window_size |
|
for idx in range(full_chunk_size): |
|
frame_list.append(x[:, :, fid:fid+window_size]) |
|
fid += window_size |
|
|
|
if fid < num_frames: |
|
frame_list.append(x[:, :, fid:]) |
|
|
|
latent_list = [] |
|
for idx, frames in enumerate(frame_list): |
|
if idx == 0: |
|
h = self.encoder(frames, is_init_image=True, temporal_chunk=True) |
|
moments = self.quant_conv(h, is_init_image=True, temporal_chunk=True) |
|
else: |
|
h = self.encoder(frames, is_init_image=False, temporal_chunk=True) |
|
moments = self.quant_conv(h, is_init_image=False, temporal_chunk=True) |
|
|
|
latent_list.append(moments) |
|
|
|
latent = torch.cat(latent_list, dim=2) |
|
return latent |
|
|
|
def get_last_layer(self): |
|
return self.decoder.conv_out.conv.weight |
|
|
|
@torch.no_grad() |
|
def chunk_decode(self, z: torch.FloatTensor, window_size=2): |
|
num_frames = z.shape[2] |
|
init_window_size = window_size + 1 |
|
frame_list = [z[:,:,:init_window_size]] |
|
|
|
|
|
full_chunk_size = (num_frames - init_window_size) // window_size |
|
fid = init_window_size |
|
for idx in range(full_chunk_size): |
|
frame_list.append(z[:, :, fid:fid+window_size]) |
|
fid += window_size |
|
|
|
if fid < num_frames: |
|
frame_list.append(z[:, :, fid:]) |
|
|
|
dec_list = [] |
|
for idx, frames in enumerate(frame_list): |
|
if idx == 0: |
|
z_h = self.post_quant_conv(frames, is_init_image=True, temporal_chunk=True) |
|
dec = self.decoder(z_h, is_init_image=True, temporal_chunk=True) |
|
else: |
|
z_h = self.post_quant_conv(frames, is_init_image=False, temporal_chunk=True) |
|
dec = self.decoder(z_h, is_init_image=False, temporal_chunk=True) |
|
|
|
dec_list.append(dec) |
|
|
|
dec = torch.cat(dec_list, dim=2) |
|
return dec |
|
|
|
def decode(self, z: torch.FloatTensor, is_init_image=True, temporal_chunk=False, |
|
return_dict: bool = True, window_size: int = 2, tile_sample_min_size: int = 256,) -> Union[DecoderOutput, torch.FloatTensor]: |
|
|
|
self.tile_sample_min_size = tile_sample_min_size |
|
self.tile_latent_min_size = int(tile_sample_min_size / self.downsample_scale) |
|
|
|
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): |
|
return self.tiled_decode(z, is_init_image=is_init_image, |
|
temporal_chunk=temporal_chunk, window_size=window_size, return_dict=return_dict) |
|
|
|
if temporal_chunk: |
|
dec = self.chunk_decode(z, window_size=window_size) |
|
else: |
|
z = self.post_quant_conv(z, is_init_image=is_init_image, temporal_chunk=False) |
|
dec = self.decoder(z, is_init_image=is_init_image, temporal_chunk=False) |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
blend_extent = min(a.shape[3], b.shape[3], blend_extent) |
|
for y in range(blend_extent): |
|
b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (y / blend_extent) |
|
return b |
|
|
|
def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor: |
|
blend_extent = min(a.shape[4], b.shape[4], blend_extent) |
|
for x in range(blend_extent): |
|
b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (x / blend_extent) |
|
return b |
|
|
|
def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True, |
|
is_init_image=True, temporal_chunk=False, window_size=16,) -> AutoencoderKLOutput: |
|
r"""Encode a batch of images using a tiled encoder. |
|
|
|
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several |
|
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is |
|
different from non-tiled encoding because each tile uses a different encoder. To avoid tiling artifacts, the |
|
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the |
|
output, but they should be much less noticeable. |
|
|
|
Args: |
|
x (`torch.FloatTensor`): Input batch of images. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.autoencoder_kl.AutoencoderKLOutput`] or `tuple`: |
|
If return_dict is True, a [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain |
|
`tuple` is returned. |
|
""" |
|
overlap_size = int(self.tile_sample_min_size * (1 - self.encode_tile_overlap_factor)) |
|
blend_extent = int(self.tile_latent_min_size * self.encode_tile_overlap_factor) |
|
row_limit = self.tile_latent_min_size - blend_extent |
|
|
|
|
|
rows = [] |
|
for i in range(0, x.shape[3], overlap_size): |
|
row = [] |
|
for j in range(0, x.shape[4], overlap_size): |
|
tile = x[:, :, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] |
|
if temporal_chunk: |
|
tile = self.chunk_encode(tile, window_size=window_size) |
|
else: |
|
tile = self.encoder(tile, is_init_image=True, temporal_chunk=False) |
|
tile = self.quant_conv(tile, is_init_image=True, temporal_chunk=False) |
|
row.append(tile) |
|
rows.append(row) |
|
result_rows = [] |
|
for i, row in enumerate(rows): |
|
result_row = [] |
|
for j, tile in enumerate(row): |
|
|
|
|
|
if i > 0: |
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) |
|
if j > 0: |
|
tile = self.blend_h(row[j - 1], tile, blend_extent) |
|
result_row.append(tile[:, :, :, :row_limit, :row_limit]) |
|
result_rows.append(torch.cat(result_row, dim=4)) |
|
|
|
moments = torch.cat(result_rows, dim=3) |
|
|
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
def tiled_decode(self, z: torch.FloatTensor, is_init_image=True, |
|
temporal_chunk=False, window_size=2, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: |
|
r""" |
|
Decode a batch of images using a tiled decoder. |
|
|
|
Args: |
|
z (`torch.FloatTensor`): Input batch of latent vectors. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.vae.DecoderOutput`] or `tuple`: |
|
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is |
|
returned. |
|
""" |
|
overlap_size = int(self.tile_latent_min_size * (1 - self.decode_tile_overlap_factor)) |
|
blend_extent = int(self.tile_sample_min_size * self.decode_tile_overlap_factor) |
|
row_limit = self.tile_sample_min_size - blend_extent |
|
|
|
|
|
|
|
rows = [] |
|
for i in range(0, z.shape[3], overlap_size): |
|
row = [] |
|
for j in range(0, z.shape[4], overlap_size): |
|
tile = z[:, :, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] |
|
if temporal_chunk: |
|
decoded = self.chunk_decode(tile, window_size=window_size) |
|
else: |
|
tile = self.post_quant_conv(tile, is_init_image=True, temporal_chunk=False) |
|
decoded = self.decoder(tile, is_init_image=True, temporal_chunk=False) |
|
row.append(decoded) |
|
rows.append(row) |
|
result_rows = [] |
|
|
|
for i, row in enumerate(rows): |
|
result_row = [] |
|
for j, tile in enumerate(row): |
|
|
|
|
|
if i > 0: |
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) |
|
if j > 0: |
|
tile = self.blend_h(row[j - 1], tile, blend_extent) |
|
result_row.append(tile[:, :, :, :row_limit, :row_limit]) |
|
result_rows.append(torch.cat(result_row, dim=4)) |
|
|
|
dec = torch.cat(result_rows, dim=3) |
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
sample_posterior: bool = True, |
|
generator: Optional[torch.Generator] = None, |
|
freeze_encoder: bool = False, |
|
is_init_image=True, |
|
temporal_chunk=False, |
|
) -> Union[DecoderOutput, torch.FloatTensor]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): Input sample. |
|
sample_posterior (`bool`, *optional*, defaults to `False`): |
|
Whether to sample from the posterior. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. |
|
""" |
|
x = sample |
|
|
|
if is_context_parallel_initialized(): |
|
assert self.training, "Only supports during training now" |
|
|
|
if freeze_encoder: |
|
with torch.no_grad(): |
|
h = self.encoder(x, is_init_image=True, temporal_chunk=False) |
|
moments = self.quant_conv(h, is_init_image=True, temporal_chunk=False) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
global_posterior = posterior |
|
else: |
|
h = self.encoder(x, is_init_image=True, temporal_chunk=False) |
|
moments = self.quant_conv(h, is_init_image=True, temporal_chunk=False) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
global_moments = conv_gather_from_context_parallel_region(moments, dim=2, kernel_size=1) |
|
global_posterior = DiagonalGaussianDistribution(global_moments) |
|
|
|
if sample_posterior: |
|
z = posterior.sample(generator=generator) |
|
else: |
|
z = posterior.mode() |
|
|
|
if get_context_parallel_rank() == 0: |
|
dec = self.decode(z, is_init_image=True).sample |
|
else: |
|
|
|
dec = self.decode(z, is_init_image=False).sample |
|
|
|
return global_posterior, dec |
|
|
|
else: |
|
|
|
if freeze_encoder: |
|
with torch.no_grad(): |
|
posterior = self.encode(x, is_init_image=is_init_image, |
|
temporal_chunk=temporal_chunk).latent_dist |
|
else: |
|
posterior = self.encode(x, is_init_image=is_init_image, |
|
temporal_chunk=temporal_chunk).latent_dist |
|
|
|
if sample_posterior: |
|
z = posterior.sample(generator=generator) |
|
else: |
|
z = posterior.mode() |
|
|
|
dec = self.decode(z, is_init_image=is_init_image, temporal_chunk=temporal_chunk).sample |
|
|
|
return posterior, dec |
|
|
|
|
|
def fuse_qkv_projections(self): |
|
""" |
|
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, |
|
key, value) are fused. For cross-attention modules, key and value projection matrices are fused. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
""" |
|
self.original_attn_processors = None |
|
|
|
for _, attn_processor in self.attn_processors.items(): |
|
if "Added" in str(attn_processor.__class__.__name__): |
|
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") |
|
|
|
self.original_attn_processors = self.attn_processors |
|
|
|
for module in self.modules(): |
|
if isinstance(module, Attention): |
|
module.fuse_projections(fuse=True) |
|
|
|
|
|
def unfuse_qkv_projections(self): |
|
"""Disables the fused QKV projection if enabled. |
|
|
|
<Tip warning={true}> |
|
|
|
This API is 🧪 experimental. |
|
|
|
</Tip> |
|
|
|
""" |
|
if self.original_attn_processors is not None: |
|
self.set_attn_processor(self.original_attn_processors) |
|
|