Spaces:
Runtime error
Runtime error
File size: 6,817 Bytes
ad48e75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# Copyright 2023 (authors: Feiteng Li)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import asdict, dataclass
from typing import Any, Dict, Optional, Union
import numpy as np
import torch
# from lhotse.features.base import FeatureExtractor
# from lhotse.utils import EPSILON, Seconds, compute_num_frames
from librosa.filters import mel as librosa_mel_fn
@dataclass
class BigVGANFbankConfig:
# Spectogram-related part
# Note that frame_length and frame_shift will be converted to milliseconds before torchaudio/Kaldi sees them
frame_length: Seconds = 1024 / 24000.0
frame_shift: Seconds = 256 / 24000.0
remove_dc_offset: bool = True
round_to_power_of_two: bool = True
# Fbank-related part
low_freq: float = 0.0
high_freq: float = 12000.0
num_mel_bins: int = 100
use_energy: bool = False
def to_dict(self) -> Dict[str, Any]:
return asdict(self)
@staticmethod
def from_dict(data: Dict[str, Any]) -> "BigVGANFbankConfig":
return BigVGANFbankConfig(**data)
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
# https://github.com/NVIDIA/BigVGAN
# bigvgan_24khz_100band https://drive.google.com/drive/folders/1EpxX6AsxjCbbk0mmAhE0td6eYiABr8Oz
class BigVGANFbank(FeatureExtractor):
name = "fbank"
config_type = BigVGANFbankConfig
def __init__(self, config: Optional[Any] = None):
super(BigVGANFbank, self).__init__(config)
sampling_rate = 24000
self.mel_basis = torch.from_numpy(
librosa_mel_fn(
sampling_rate,
1024,
self.config.num_mel_bins,
self.config.low_freq,
self.config.high_freq,
).astype(np.float32)
)
self.hann_window = torch.hann_window(1024)
def _feature_fn(self, samples, **kwargs):
win_length, n_fft = 1024, 1024
hop_size = 256
if True:
sampling_rate = 24000
duration = round(samples.shape[-1] / sampling_rate, ndigits=12)
expected_num_frames = compute_num_frames(
duration=duration,
frame_shift=self.frame_shift,
sampling_rate=sampling_rate,
)
pad_size = (
(expected_num_frames - 1) * hop_size
+ win_length
- samples.shape[-1]
)
assert pad_size >= 0
y = torch.nn.functional.pad(
samples,
(0, pad_size),
mode="constant",
)
else:
y = torch.nn.functional.pad(
samples,
(int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
mode="reflect",
)
y = y.squeeze(1)
# complex tensor as default, then use view_as_real for future pytorch compatibility
spec = torch.stft(
y,
n_fft,
hop_length=hop_size,
win_length=win_length,
window=self.hann_window,
center=False,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
spec = torch.view_as_real(spec)
spec = torch.sqrt(spec.pow(2).sum(-1) + (1e-9))
spec = torch.matmul(self.mel_basis, spec)
spec = spectral_normalize_torch(spec)
return spec.transpose(2, 1).squeeze(0)
def extract(
self, samples: Union[np.ndarray, torch.Tensor], sampling_rate: int
) -> np.ndarray:
assert sampling_rate == 24000
params = asdict(self.config)
params.update({"sample_frequency": sampling_rate, "snip_edges": False})
params["frame_shift"] *= 1000.0
params["frame_length"] *= 1000.0
if not isinstance(samples, torch.Tensor):
samples = torch.from_numpy(samples)
# Torchaudio Kaldi feature extractors expect the channel dimension to be first.
if len(samples.shape) == 1:
samples = samples.unsqueeze(0)
features = self._feature_fn(samples, **params).to(torch.float32)
return features.numpy()
@property
def frame_shift(self) -> Seconds:
return self.config.frame_shift
def feature_dim(self, sampling_rate: int) -> int:
return self.config.num_mel_bins
@staticmethod
def mix(
features_a: np.ndarray,
features_b: np.ndarray,
energy_scaling_factor_b: float,
) -> np.ndarray:
return np.log(
np.maximum(
# protection against log(0); max with EPSILON is adequate since these are energies (always >= 0)
EPSILON,
np.exp(features_a)
+ energy_scaling_factor_b * np.exp(features_b),
)
)
@staticmethod
def compute_energy(features: np.ndarray) -> float:
return float(np.sum(np.exp(features)))
def get_fbank_extractor() -> BigVGANFbank:
return BigVGANFbank(BigVGANFbankConfig())
if __name__ == "__main__":
extractor = BigVGANFbank(BigVGANFbankConfig())
samples = torch.from_numpy(np.random.random([1000]).astype(np.float32))
samples = torch.clip(samples, -1.0, 1.0)
fbank = extractor.extract(samples, 24000.0)
print(f"fbank {fbank.shape}")
from scipy.io.wavfile import read
MAX_WAV_VALUE = 32768.0
sampling_rate, samples = read(
"egs/libritts/prompts/5639_40744_000000_000002.wav"
)
print(f"samples: [{samples.min()}, {samples.max()}]")
fbank = extractor.extract(samples.astype(np.float32) / MAX_WAV_VALUE, 24000)
print(f"fbank {fbank.shape}")
import matplotlib.pyplot as plt
_ = plt.figure(figsize=(18, 10))
plt.imshow(
X=fbank.transpose(1, 0),
cmap=plt.get_cmap("jet"),
aspect="auto",
interpolation="nearest",
)
plt.gca().invert_yaxis()
plt.savefig("egs/libritts/prompts/5639_40744_000000_000002.png")
plt.close()
print("fbank test PASS!")
|