lama-cleaner-demo / benchmark.py
sichaolong's picture
Upload 97 files
4baf7bf
# #!/usr/bin/env python3
#
# import argparse
# import os
# import time
# import numpy as np
# import nvidia_smi
# import psutil
# import torch
#
# from model_manager import ModelManager
# from schema import Config, HDStrategy, SDSampler
#
# try:
# torch._C._jit_override_can_fuse_on_cpu(False)
# torch._C._jit_override_can_fuse_on_gpu(False)
# torch._C._jit_set_texpr_fuser_enabled(False)
# torch._C._jit_set_nvfuser_enabled(False)
# except:
# pass
#
# NUM_THREADS = str(4)
#
# os.environ["OMP_NUM_THREADS"] = NUM_THREADS
# os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS
# os.environ["MKL_NUM_THREADS"] = NUM_THREADS
# os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS
# os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS
# if os.environ.get("CACHE_DIR"):
# os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"]
#
#
# def run_model(model, size):
# # RGB
# image = np.random.randint(0, 256, (size[0], size[1], 3)).astype(np.uint8)
# mask = np.random.randint(0, 255, size).astype(np.uint8)
#
# config = Config(
# ldm_steps=2,
# hd_strategy=HDStrategy.ORIGINAL,
# hd_strategy_crop_margin=128,
# hd_strategy_crop_trigger_size=128,
# hd_strategy_resize_limit=128,
# prompt="a fox is sitting on a bench",
# sd_steps=5,
# sd_sampler=SDSampler.ddim
# )
# model(image, mask, config)
#
#
# def benchmark(model, times: int, empty_cache: bool):
# sizes = [(512, 512)]
#
# nvidia_smi.nvmlInit()
# device_id = 0
# handle = nvidia_smi.nvmlDeviceGetHandleByIndex(device_id)
#
# def format(metrics):
# return f"{np.mean(metrics):.2f} ± {np.std(metrics):.2f}"
#
# process = psutil.Process(os.getpid())
# # 每个 size 给出显存和内存占用的指标
# for size in sizes:
# torch.cuda.empty_cache()
# time_metrics = []
# cpu_metrics = []
# memory_metrics = []
# gpu_memory_metrics = []
# for _ in range(times):
# start = time.time()
# run_model(model, size)
# torch.cuda.synchronize()
#
# # cpu_metrics.append(process.cpu_percent())
# time_metrics.append((time.time() - start) * 1000)
# memory_metrics.append(process.memory_info().rss / 1024 / 1024)
# gpu_memory_metrics.append(nvidia_smi.nvmlDeviceGetMemoryInfo(handle).used / 1024 / 1024)
#
# print(f"size: {size}".center(80, "-"))
# # print(f"cpu: {format(cpu_metrics)}")
# print(f"latency: {format(time_metrics)}ms")
# print(f"memory: {format(memory_metrics)} MB")
# print(f"gpu memory: {format(gpu_memory_metrics)} MB")
#
# nvidia_smi.nvmlShutdown()
#
#
# def get_args_parser():
# parser = argparse.ArgumentParser()
# parser.add_argument("--name")
# parser.add_argument("--device", default="cuda", type=str)
# parser.add_argument("--times", default=10, type=int)
# parser.add_argument("--empty-cache", action="store_true")
# return parser.parse_args()
#
#
# if __name__ == "__main__":
# args = get_args_parser()
# device = torch.device(args.device)
# model = ModelManager(
# name=args.name,
# device=device,
# sd_run_local=True,
# disable_nsfw=True,
# sd_cpu_textencoder=True,
# hf_access_token="123"
# )
# benchmark(model, args.times, args.empty_cache)