Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
from langchain_core.prompts import PromptTemplate
|
5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
6 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
7 |
+
import google.generativeai as genai
|
8 |
+
from langchain.chains.question_answering import load_qa_chain
|
9 |
+
import torch
|
10 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
11 |
+
from PIL import Image
|
12 |
+
import io
|
13 |
+
|
14 |
+
# Configure Gemini API
|
15 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
16 |
+
|
17 |
+
# Load Mistral model
|
18 |
+
model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base"
|
19 |
+
mistral_tokenizer = AutoTokenizer.from_pretrained(model_path)
|
20 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
21 |
+
dtype = torch.bfloat16
|
22 |
+
mistral_model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=dtype, device_map=device)
|
23 |
+
|
24 |
+
def process_pdf(file_path, question):
|
25 |
+
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
26 |
+
prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """
|
27 |
+
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
28 |
+
|
29 |
+
pdf_loader = PyPDFLoader(file_path)
|
30 |
+
pages = pdf_loader.load_and_split()
|
31 |
+
context = "\n".join(str(page.page_content) for page in pages[:30])
|
32 |
+
stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
33 |
+
stuff_answer = stuff_chain({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True)
|
34 |
+
return stuff_answer['output_text']
|
35 |
+
|
36 |
+
def process_image(image, question):
|
37 |
+
model = genai.GenerativeModel('gemini-pro-vision')
|
38 |
+
response = model.generate_content([image, question])
|
39 |
+
return response.text
|
40 |
+
|
41 |
+
def generate_mistral_followup(answer):
|
42 |
+
mistral_prompt = f"Based on this answer: {answer}\nGenerate a follow-up question:"
|
43 |
+
mistral_inputs = mistral_tokenizer.encode(mistral_prompt, return_tensors='pt').to(device)
|
44 |
+
with torch.no_grad():
|
45 |
+
mistral_outputs = mistral_model.generate(mistral_inputs, max_length=50)
|
46 |
+
mistral_output = mistral_tokenizer.decode(mistral_outputs[0], skip_special_tokens=True)
|
47 |
+
return mistral_output
|
48 |
+
|
49 |
+
def process_input(file, image, question):
|
50 |
+
try:
|
51 |
+
if file is not None:
|
52 |
+
gemini_answer = process_pdf(file.name, question)
|
53 |
+
elif image is not None:
|
54 |
+
gemini_answer = process_image(image, question)
|
55 |
+
else:
|
56 |
+
return "Please upload a PDF file or an image."
|
57 |
+
|
58 |
+
mistral_followup = generate_mistral_followup(gemini_answer)
|
59 |
+
combined_output = f"Gemini Answer: {gemini_answer}\n\nMistral Follow-up: {mistral_followup}"
|
60 |
+
return combined_output
|
61 |
+
except Exception as e:
|
62 |
+
return f"An error occurred: {str(e)}"
|
63 |
+
|
64 |
+
# Define Gradio Interface
|
65 |
+
with gr.Blocks() as demo:
|
66 |
+
gr.Markdown("# Multi-modal RAG Knowledge Retrieval using Gemini API and Mistral Model")
|
67 |
+
|
68 |
+
with gr.Row():
|
69 |
+
with gr.Column():
|
70 |
+
input_file = gr.File(label="Upload PDF File")
|
71 |
+
input_image = gr.Image(type="pil", label="Upload Image")
|
72 |
+
input_question = gr.Textbox(label="Ask about the document or image")
|
73 |
+
|
74 |
+
output_text = gr.Textbox(label="Answer - Combined Gemini and Mistral")
|
75 |
+
|
76 |
+
submit_button = gr.Button("Submit")
|
77 |
+
submit_button.click(fn=process_input, inputs=[input_file, input_image, input_question], outputs=output_text)
|
78 |
+
|
79 |
+
demo.launch()
|