import gradio as gr import os from langchain_google_genai import ChatGoogleGenerativeAI from langchain_google_genai import GoogleGenerativeAIEmbeddings from langchain.prompts import PromptTemplate from langchain_community.vectorstores import Chroma from langchain.text_splitter import CharacterTextSplitter from langchain.chains.combine_documents import create_stuff_documents_chain from langchain.chains import create_retrieval_chain from langchain_community.document_loaders import PyPDFLoader # Set your API key #GOOGLE_API_KEY = "YOUR_GOOGLE_API_KEY" GOOGLE_API_KEY = "AIzaSyCHLS-wFvSYxSTJjkRQQ-FiC5064112Eq8" def process_pdf_and_question(pdf_file, question): # Load the models with the API key llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_API_KEY) embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001", google_api_key=GOOGLE_API_KEY) # Save the uploaded PDF temporarily temp_pdf_path = "temp_handbook.pdf" with open(temp_pdf_path, "wb") as f: f.write(pdf_file) # Load the PDF and create chunks loader = PyPDFLoader(temp_pdf_path) text_splitter = CharacterTextSplitter( separator=".", chunk_size=500, chunk_overlap=50, length_function=len, is_separator_regex=False, ) pages = loader.load_and_split(text_splitter) # Turn the chunks into embeddings and store them in Chroma vectordb = Chroma.from_documents(pages, embeddings) # Configure Chroma as a retriever with top_k=10 retriever = vectordb.as_retriever(search_kwargs={"k": 10}) # Create the retrieval chain template = """You are a helpful AI assistant. Answer based on the context provided. context: {context} input: {input} answer:""" prompt = PromptTemplate.from_template(template) combine_docs_chain = create_stuff_documents_chain(llm, prompt) retrieval_chain = create_retrieval_chain(retriever, combine_docs_chain) # Invoke the retrieval chain response = retrieval_chain.invoke({"input": question}) # Clean up the temporary PDF file os.remove(temp_pdf_path) return response["answer"] # Define Gradio interface iface = gr.Interface( fn=process_pdf_and_question, inputs=[ gr.File(label="上傳PDF手冊"), gr.Textbox(label="輸入您的問題") ], outputs=gr.Textbox(label="回答"), title="PDF問答系統", description="上傳PDF手冊並提出問題,AI將根據手冊內容回答您的問題。" ) # Launch the interface iface.launch()