Spaces:
Build error
Build error
import os | |
import gradio as gr | |
import whisper | |
import librosa | |
import torch | |
from transformers import Wav2Vec2Processor, Wav2Vec2Tokenizer | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
def audio_to_text(audio): | |
model = whisper.load_model("base") | |
audio = whisper.load_audio(audio) | |
result = model.transcribe(audio) | |
return result["text"] | |
# tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h") | |
# logits = preprocess(audio) | |
# predicted_ids = torch.argmax(logits, dim=-1) | |
# transcriptions = tokenizer.decode(predicted_ids[0]) | |
# return transcriptions | |
def preprocess(audio): | |
model_save_path = "model_save" | |
model_name = "wav2vec2_osr_version_1" | |
speech, rate = librosa.load(audio, sr=16000) | |
model_path = os.path.join(model_save_path, model_name+".pt") | |
pipeline_path = os.path.join(model_save_path, model_name+"_vocab") | |
access_token = "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" | |
processor = Wav2Vec2Processor.from_pretrained(pipeline_path, use_auth_token=access_token) | |
model = torch.load(model_path) | |
model.eval() | |
input_values = processor(speech, sampling_rate=rate, return_tensors="pt").input_values.to(device) | |
logits = model(input_values).logits | |
return logits | |
demo = gr.Interface( | |
fn=audio_to_text, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
examples=[["example.flac"]], | |
outputs="text" | |
) | |
demo.launch() |