siddhantuniyal's picture
Upload app.py
ad7804d
raw
history blame
2.03 kB
from transformers import pipeline
import gradio as gr
from nltk.sentiment.vader import SentimentIntensityAnalyzer
import nltk
nltk.download('vader_lexicon')
zero_shot_classifier = pipeline("zero-shot-classification" , model='roberta-large-mnli')
spam_detector = pipeline("text-classification", model="madhurjindal/autonlp-Gibberish-Detector-492513457")
issues = ["Misconduct" , "Negligence" , "Discrimination" , "Corruption" , "Violation of Rights" , "Inefficiency" ,
"Unprofessional Conduct", "Response Time" , "Use of Firearms" , "Property Damage"]
apprecn = ["Tech-Savvy Staff" , "Co-operative Staff" , "Well-Maintained Premises" , "Responsive Staff"]
def spam_detection(input_text):
return spam_detector(input_text)[0]['label'] == 'clean'
def sentiment_analysis(input_text):
score = SentimentIntensityAnalyzer().polarity_scores(input_text)
if score['neg']>score['pos']:
return "Negative Feedback"
elif score['neg']<score['pos']:
return "Positive Feedback"
else:
return "Neutral Feedback"
def positive_zero_shot(input_text):
return zero_shot_classifier(input_text , candidate_labels = apprecn , multi_label = False)['labels'][0]
def negative_zero_shot(input_text):
return zero_shot_classifier(input_text , candidate_labels = issues , multi_label = False)['labels'][0]
def pipeline(input_text):
if spam_detection(input_text):
if sentiment_analysis(input_text) == "Positive Feedback":
return "Positive Feedback" , positive_zero_shot(input_text)
elif sentiment_analysis(input_text) == "Negative Feedback":
return "Negative Feedback" , negative_zero_shot(input_text)
else:
return "Neutral Feedback" , ""
else:
return "Spam" , ""
iface = gr.Interface(fn = pipeline , inputs=['text'] , outputs=['text' , 'text'])
iface.launch(share=True)