siddhartharya commited on
Commit
41f95b2
·
verified ·
1 Parent(s): ab5ba21

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -15
app.py CHANGED
@@ -7,11 +7,15 @@ proxycurl_api_key = os.getenv("PROXYCURL_API_KEY") # Proxycurl API key
7
  groq_api_key = os.getenv("GROQ_CLOUD_API_KEY") # Groq Cloud API key
8
 
9
  class EmailAgent:
10
- def __init__(self, linkedin_url, company_name, role, word_limit):
11
  self.linkedin_url = linkedin_url
12
  self.company_name = company_name
13
  self.role = role
14
  self.word_limit = word_limit
 
 
 
 
15
  self.bio = None
16
  self.skills = []
17
  self.experiences = []
@@ -21,10 +25,6 @@ class EmailAgent:
21
  # Reason: Decide what information is needed
22
  def reason_about_data(self):
23
  print("Reasoning: I need LinkedIn data, company info, and role description.")
24
- if not self.linkedin_url:
25
- print("Warning: LinkedIn URL missing. Will proceed with default bio.")
26
- if not self.company_name:
27
- print("Warning: Company name missing. Will proceed with default company info.")
28
 
29
  # Action: Fetch LinkedIn data via Proxycurl
30
  def fetch_linkedin_data(self):
@@ -73,14 +73,12 @@ class EmailAgent:
73
  # Action: Fetch role description
74
  def fetch_role_description(self):
75
  print(f"Action: Fetching role description for {self.role}.")
76
- self.role_description = f"The role of {self.role} at {self.company_name} involves..."
77
 
78
  # Reflection: Check if the data is sufficient to generate an email
79
  def reflect_on_data(self):
80
  print("Reflection: Do I have enough data to generate the email?")
81
  # Allow the email to be generated with default values if data is missing
82
- if not self.bio or not self.skills or not self.company_info:
83
- print("Warning: Some critical information is missing. Proceeding with default values.")
84
  return True
85
 
86
  # Action: Generate the email using Groq Cloud LLM
@@ -89,11 +87,21 @@ class EmailAgent:
89
  prompt = f"""
90
  Write a professional email applying for the {self.role} position at {self.company_name}.
91
  The candidate’s bio is: {self.bio}.
92
- The candidate's LinkedIn profile highlights the following skills: {', '.join(self.skills)}.
93
- The candidate has the following experiences relevant to the job: {', '.join([exp['title'] for exp in self.experiences])}.
94
- The email should be professional, concise, and tailored to the company's culture.
95
- Use relevant company details: {self.company_info}.
96
- Highlight the candidate’s skills and experiences from LinkedIn, and map them to the job's requirements: {self.role_description}.
 
 
 
 
 
 
 
 
 
 
97
  The email should not exceed {self.word_limit} words.
98
  """
99
 
@@ -141,8 +149,8 @@ def gradio_ui():
141
  email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)
142
 
143
  # Function to create and run the email agent
144
- def create_email(name, company_name, role, email, phone, linkedin_profile_url, word_limit):
145
- agent = EmailAgent(linkedin_profile_url, company_name, role, word_limit)
146
  return agent.run()
147
 
148
  # Gradio interface
 
7
  groq_api_key = os.getenv("GROQ_CLOUD_API_KEY") # Groq Cloud API key
8
 
9
  class EmailAgent:
10
+ def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin):
11
  self.linkedin_url = linkedin_url
12
  self.company_name = company_name
13
  self.role = role
14
  self.word_limit = word_limit
15
+ self.user_name = user_name
16
+ self.email = email
17
+ self.phone = phone
18
+ self.linkedin = linkedin
19
  self.bio = None
20
  self.skills = []
21
  self.experiences = []
 
25
  # Reason: Decide what information is needed
26
  def reason_about_data(self):
27
  print("Reasoning: I need LinkedIn data, company info, and role description.")
 
 
 
 
28
 
29
  # Action: Fetch LinkedIn data via Proxycurl
30
  def fetch_linkedin_data(self):
 
73
  # Action: Fetch role description
74
  def fetch_role_description(self):
75
  print(f"Action: Fetching role description for {self.role}.")
76
+ self.role_description = f"The role of {self.role} at {self.company_name} involves mentoring AI and technology students to develop their skills and progress their careers."
77
 
78
  # Reflection: Check if the data is sufficient to generate an email
79
  def reflect_on_data(self):
80
  print("Reflection: Do I have enough data to generate the email?")
81
  # Allow the email to be generated with default values if data is missing
 
 
82
  return True
83
 
84
  # Action: Generate the email using Groq Cloud LLM
 
87
  prompt = f"""
88
  Write a professional email applying for the {self.role} position at {self.company_name}.
89
  The candidate’s bio is: {self.bio}.
90
+
91
+ Focus on relevant skills and experiences from LinkedIn, such as {', '.join(self.skills)},
92
+ that directly align with the role of {self.role}.
93
+ Highlight only the skills and experiences that relate to mentoring, AI, technology, and leadership.
94
+
95
+ The company info is: {self.company_info}.
96
+ The role involves: {self.role_description}.
97
+
98
+ End the email with this signature:
99
+ Best regards,
100
+ {self.user_name}
101
+ Email: {self.email}
102
+ Phone: {self.phone}
103
+ LinkedIn: {self.linkedin}
104
+
105
  The email should not exceed {self.word_limit} words.
106
  """
107
 
 
149
  email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)
150
 
151
  # Function to create and run the email agent
152
+ def create_email(name, company_name, role, email, phone, linkedin_url, word_limit):
153
+ agent = EmailAgent(linkedin_url, company_name, role, word_limit, name, email, phone, linkedin_url)
154
  return agent.run()
155
 
156
  # Gradio interface