siddhartharya
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -60,7 +60,7 @@ class EmailAgent:
|
|
60 |
def fetch_company_info(self):
|
61 |
if not self.company_name:
|
62 |
print("Action: No company name provided, using default company info.")
|
63 |
-
self.company_info = "A leading company in its field
|
64 |
else:
|
65 |
print(f"Action: Fetching company info for {self.company_name}.")
|
66 |
headers = {"Authorization": f"Bearer {proxycurl_api_key}"}
|
@@ -71,7 +71,7 @@ class EmailAgent:
|
|
71 |
self.company_info = data.get("description", "No detailed company info available.")
|
72 |
else:
|
73 |
print(f"Error: Unable to fetch company info for {self.company_name}. Using default info.")
|
74 |
-
self.company_info = "A leading company in its field
|
75 |
|
76 |
# Action: Scrape the company's website for role-specific information or use defaults
|
77 |
def scrape_role_from_website(self):
|
@@ -103,7 +103,7 @@ class EmailAgent:
|
|
103 |
# Action: Use default logic for role description if no role is available
|
104 |
def use_default_role_description(self):
|
105 |
print(f"Action: Using default logic for the role of {self.role}.")
|
106 |
-
self.role_description = f"The role of {self.role} at {self.company_name} involves
|
107 |
|
108 |
# Reflection: Check if we have enough data to generate the email
|
109 |
def reflect_on_data(self):
|
@@ -115,17 +115,20 @@ class EmailAgent:
|
|
115 |
# Final Action: Generate the email using Groq Cloud LLM based on gathered data
|
116 |
def generate_email(self):
|
117 |
print("Action: Generating the email with the gathered information.")
|
|
|
|
|
118 |
prompt = f"""
|
119 |
Write a professional email applying for the {self.role} position at {self.company_name}.
|
120 |
-
The candidate’s bio is: {self.bio}.
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
125 |
|
126 |
-
|
127 |
-
The role involves: {self.role_description}.
|
128 |
|
|
|
|
|
129 |
End the email with this signature:
|
130 |
Best regards,
|
131 |
{self.user_name}
|
@@ -137,7 +140,10 @@ class EmailAgent:
|
|
137 |
"""
|
138 |
|
139 |
url = "https://api.groq.com/openai/v1/chat/completions"
|
140 |
-
headers = {
|
|
|
|
|
|
|
141 |
|
142 |
data = {
|
143 |
"messages": [{"role": "user", "content": prompt}],
|
@@ -174,7 +180,7 @@ def gradio_ui():
|
|
174 |
email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address")
|
175 |
phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number")
|
176 |
linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL")
|
177 |
-
word_limit_slider = gr.Slider(minimum=50, maximum=300, step=10, label="Email Word Limit", value=150)
|
178 |
|
179 |
# Output field
|
180 |
email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)
|
|
|
60 |
def fetch_company_info(self):
|
61 |
if not self.company_name:
|
62 |
print("Action: No company name provided, using default company info.")
|
63 |
+
self.company_info = "A leading company in its field."
|
64 |
else:
|
65 |
print(f"Action: Fetching company info for {self.company_name}.")
|
66 |
headers = {"Authorization": f"Bearer {proxycurl_api_key}"}
|
|
|
71 |
self.company_info = data.get("description", "No detailed company info available.")
|
72 |
else:
|
73 |
print(f"Error: Unable to fetch company info for {self.company_name}. Using default info.")
|
74 |
+
self.company_info = "A leading company in its field."
|
75 |
|
76 |
# Action: Scrape the company's website for role-specific information or use defaults
|
77 |
def scrape_role_from_website(self):
|
|
|
103 |
# Action: Use default logic for role description if no role is available
|
104 |
def use_default_role_description(self):
|
105 |
print(f"Action: Using default logic for the role of {self.role}.")
|
106 |
+
self.role_description = f"The role of {self.role} at {self.company_name} involves leadership and management."
|
107 |
|
108 |
# Reflection: Check if we have enough data to generate the email
|
109 |
def reflect_on_data(self):
|
|
|
115 |
# Final Action: Generate the email using Groq Cloud LLM based on gathered data
|
116 |
def generate_email(self):
|
117 |
print("Action: Generating the email with the gathered information.")
|
118 |
+
|
119 |
+
# Updated and fully dynamic LLM prompt
|
120 |
prompt = f"""
|
121 |
Write a professional email applying for the {self.role} position at {self.company_name}.
|
|
|
122 |
|
123 |
+
Use the following information:
|
124 |
+
- The candidate’s LinkedIn bio: {self.bio}.
|
125 |
+
- The candidate’s most relevant skills: {', '.join(self.skills)}.
|
126 |
+
- The candidate’s professional experience: {', '.join([exp['title'] for exp in self.experiences])}.
|
127 |
|
128 |
+
Please research the company's public information. If no company-specific information is available, use general knowledge about the company's industry.
|
|
|
129 |
|
130 |
+
Tailor the email dynamically to the role of **{self.role}** at {self.company_name}, aligning the candidate's skills and experiences with the expected responsibilities of the role and the company’s operations.
|
131 |
+
|
132 |
End the email with this signature:
|
133 |
Best regards,
|
134 |
{self.user_name}
|
|
|
140 |
"""
|
141 |
|
142 |
url = "https://api.groq.com/openai/v1/chat/completions"
|
143 |
+
headers = {
|
144 |
+
"Authorization": f"Bearer {groq_api_key}",
|
145 |
+
"Content-Type": "application/json",
|
146 |
+
}
|
147 |
|
148 |
data = {
|
149 |
"messages": [{"role": "user", "content": prompt}],
|
|
|
180 |
email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address")
|
181 |
phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number")
|
182 |
linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL")
|
183 |
+
word_limit_slider = gr.Slider(minimum=50, maximum=300, step=10, label="Email Word Limit", value=150)
|
184 |
|
185 |
# Output field
|
186 |
email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)
|