Spaces:
Runtime error
Runtime error
File size: 28,062 Bytes
e0c7c25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 |
# Copyright 2020 Erik Härkönen. All rights reserved.
# This file is licensed to you under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License. You may obtain a copy
# of the License at http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software distributed under
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS
# OF ANY KIND, either express or implied. See the License for the specific language
# governing permissions and limitations under the License.
import torch
import numpy as np
import re
import os
import random
from pathlib import Path
from types import SimpleNamespace
from utils import download_ckpt
from config import Config
from netdissect import proggan, zdataset
from . import biggan
from . import stylegan
from . import stylegan2
from abc import abstractmethod, ABC as AbstractBaseClass
from functools import singledispatch
class BaseModel(AbstractBaseClass, torch.nn.Module):
# Set parameters for identifying model from instance
def __init__(self, model_name, class_name):
super(BaseModel, self).__init__()
self.model_name = model_name
self.outclass = class_name
# Stop model evaluation as soon as possible after
# given layer has been executed, used to speed up
# netdissect.InstrumentedModel::retain_layer().
# Validate with tests/partial_forward_test.py
# Can use forward() as fallback at the cost of performance.
@abstractmethod
def partial_forward(self, x, layer_name):
pass
# Generate batch of latent vectors
@abstractmethod
def sample_latent(self, n_samples=1, seed=None, truncation=None):
pass
# Maximum number of latents that can be provided
# Typically one for each layer
def get_max_latents(self):
return 1
# Name of primary latent space
# E.g. StyleGAN can alternatively use W
def latent_space_name(self):
return 'Z'
def get_latent_shape(self):
return tuple(self.sample_latent(1).shape)
def get_latent_dims(self):
return np.prod(self.get_latent_shape())
def set_output_class(self, new_class):
self.outclass = new_class
# Map from typical range [-1, 1] to [0, 1]
def forward(self, x):
out = self.model.forward(x)
return 0.5*(out+1)
# Generate images and convert to numpy
def sample_np(self, z=None, n_samples=1, seed=None):
if z is None:
z = self.sample_latent(n_samples, seed=seed)
elif isinstance(z, list):
z = [torch.tensor(l).to(self.device) if not torch.is_tensor(l) else l for l in z]
elif not torch.is_tensor(z):
z = torch.tensor(z).to(self.device)
img = self.forward(z)
img_np = img.permute(0, 2, 3, 1).cpu().detach().numpy()
return np.clip(img_np, 0.0, 1.0).squeeze()
# For models that use part of latent as conditioning
def get_conditional_state(self, z):
return None
# For models that use part of latent as conditioning
def set_conditional_state(self, z, c):
return z
def named_modules(self, *args, **kwargs):
return self.model.named_modules(*args, **kwargs)
# PyTorch port of StyleGAN 2
class StyleGAN2(BaseModel):
def __init__(self, device, class_name, truncation=1.0, use_w=False):
super(StyleGAN2, self).__init__('StyleGAN2', class_name or 'ffhq')
self.device = device
self.truncation = truncation
self.latent_avg = None
self.w_primary = use_w # use W as primary latent space?
# Image widths
configs = {
# Converted NVIDIA official
'ffhq': 1024,
'car': 512,
'cat': 256,
'church': 256,
'horse': 256,
# Tuomas
'bedrooms': 256,
'kitchen': 256,
'places': 256,
'lookbook': 512
}
assert self.outclass in configs, \
f'Invalid StyleGAN2 class {self.outclass}, should be one of [{", ".join(configs.keys())}]'
self.resolution = configs[self.outclass]
self.name = f'StyleGAN2-{self.outclass}'
self.has_latent_residual = True
self.load_model()
self.set_noise_seed(0)
def latent_space_name(self):
return 'W' if self.w_primary else 'Z'
def use_w(self):
self.w_primary = True
def use_z(self):
self.w_primary = False
# URLs created with https://sites.google.com/site/gdocs2direct/
def download_checkpoint(self, outfile):
checkpoints = {
'horse': 'https://drive.google.com/uc?export=download&id=18SkqWAkgt0fIwDEf2pqeaenNi4OoCo-0',
'ffhq': 'https://drive.google.com/uc?export=download&id=1FJRwzAkV-XWbxgTwxEmEACvuqF5DsBiV',
'church': 'https://drive.google.com/uc?export=download&id=1HFM694112b_im01JT7wop0faftw9ty5g',
'car': 'https://drive.google.com/uc?export=download&id=1iRoWclWVbDBAy5iXYZrQnKYSbZUqXI6y',
'cat': 'https://drive.google.com/uc?export=download&id=15vJP8GDr0FlRYpE8gD7CdeEz2mXrQMgN',
'places': 'https://drive.google.com/uc?export=download&id=1X8-wIH3aYKjgDZt4KMOtQzN1m4AlCVhm',
'bedrooms': 'https://drive.google.com/uc?export=download&id=1nZTW7mjazs-qPhkmbsOLLA_6qws-eNQu',
'kitchen': 'https://drive.google.com/uc?export=download&id=15dCpnZ1YLAnETAPB0FGmXwdBclbwMEkZ',
'lookbook': 'https://drive.google.com/uc?export=download&id=1-F-RMkbHUv_S_k-_olh43mu5rDUMGYKe'
}
url = checkpoints[self.outclass]
download_ckpt(url, outfile)
def load_model(self):
checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints')
checkpoint = Path(checkpoint_root) / f'stylegan2/stylegan2_{self.outclass}_{self.resolution}.pt'
self.model = stylegan2.Generator(self.resolution, 512, 8).to(self.device)
if not checkpoint.is_file():
os.makedirs(checkpoint.parent, exist_ok=True)
self.download_checkpoint(checkpoint)
ckpt = torch.load(checkpoint)
self.model.load_state_dict(ckpt['g_ema'], strict=False)
self.latent_avg = 0
def sample_latent(self, n_samples=1, seed=None, truncation=None):
if seed is None:
seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state
rng = np.random.RandomState(seed)
z = torch.from_numpy(
rng.standard_normal(512 * n_samples)
.reshape(n_samples, 512)).float().to(self.device) #[N, 512]
if self.w_primary:
z = self.model.style(z)
return z
def get_max_latents(self):
return self.model.n_latent
def set_output_class(self, new_class):
if self.outclass != new_class:
raise RuntimeError('StyleGAN2: cannot change output class without reloading')
def forward(self, x):
x = x if isinstance(x, list) else [x]
out, _ = self.model(x, noise=self.noise,
truncation=self.truncation, truncation_latent=self.latent_avg, input_is_w=self.w_primary)
return 0.5*(out+1)
def partial_forward(self, x, layer_name):
styles = x if isinstance(x, list) else [x]
inject_index = None
noise = self.noise
if not self.w_primary:
styles = [self.model.style(s) for s in styles]
if len(styles) == 1:
# One global latent
inject_index = self.model.n_latent
latent = self.model.strided_style(styles[0].unsqueeze(1).repeat(1, inject_index, 1)) # [N, 18, 512]
elif len(styles) == 2:
# Latent mixing with two latents
if inject_index is None:
inject_index = random.randint(1, self.model.n_latent - 1)
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = styles[1].unsqueeze(1).repeat(1, self.model.n_latent - inject_index, 1)
latent = self.model.strided_style(torch.cat([latent, latent2], 1))
else:
# One latent per layer
assert len(styles) == self.model.n_latent, f'Expected {self.model.n_latents} latents, got {len(styles)}'
styles = torch.stack(styles, dim=1) # [N, 18, 512]
latent = self.model.strided_style(styles)
if 'style' in layer_name:
return
out = self.model.input(latent)
if 'input' == layer_name:
return
out = self.model.conv1(out, latent[:, 0], noise=noise[0])
if 'conv1' in layer_name:
return
skip = self.model.to_rgb1(out, latent[:, 1])
if 'to_rgb1' in layer_name:
return
i = 1
noise_i = 1
for conv1, conv2, to_rgb in zip(
self.model.convs[::2], self.model.convs[1::2], self.model.to_rgbs
):
out = conv1(out, latent[:, i], noise=noise[noise_i])
if f'convs.{i-1}' in layer_name:
return
out = conv2(out, latent[:, i + 1], noise=noise[noise_i + 1])
if f'convs.{i}' in layer_name:
return
skip = to_rgb(out, latent[:, i + 2], skip)
if f'to_rgbs.{i//2}' in layer_name:
return
i += 2
noise_i += 2
image = skip
raise RuntimeError(f'Layer {layer_name} not encountered in partial_forward')
def set_noise_seed(self, seed):
torch.manual_seed(seed)
self.noise = [torch.randn(1, 1, 2 ** 2, 2 ** 2, device=self.device)]
for i in range(3, self.model.log_size + 1):
for _ in range(2):
self.noise.append(torch.randn(1, 1, 2 ** i, 2 ** i, device=self.device))
# PyTorch port of StyleGAN 1
class StyleGAN(BaseModel):
def __init__(self, device, class_name, truncation=1.0, use_w=False):
super(StyleGAN, self).__init__('StyleGAN', class_name or 'ffhq')
self.device = device
self.w_primary = use_w # is W primary latent space?
configs = {
# Official
'ffhq': 1024,
'celebahq': 1024,
'bedrooms': 256,
'cars': 512,
'cats': 256,
# From https://github.com/justinpinkney/awesome-pretrained-stylegan
'vases': 1024,
'wikiart': 512,
'fireworks': 512,
'abstract': 512,
'anime': 512,
'ukiyo-e': 512,
}
assert self.outclass in configs, \
f'Invalid StyleGAN class {self.outclass}, should be one of [{", ".join(configs.keys())}]'
self.resolution = configs[self.outclass]
self.name = f'StyleGAN-{self.outclass}'
self.has_latent_residual = True
self.load_model()
self.set_noise_seed(0)
def latent_space_name(self):
return 'W' if self.w_primary else 'Z'
def use_w(self):
self.w_primary = True
def use_z(self):
self.w_primary = False
def load_model(self):
checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints')
checkpoint = Path(checkpoint_root) / f'stylegan/stylegan_{self.outclass}_{self.resolution}.pt'
self.model = stylegan.StyleGAN_G(self.resolution).to(self.device)
urls_tf = {
'vases': 'https://thisvesseldoesnotexist.s3-us-west-2.amazonaws.com/public/network-snapshot-008980.pkl',
'fireworks': 'https://mega.nz/#!7uBHnACY!quIW-pjdDa7NqnZOYh1z5UemWwPOW6HkYSoJ4usCg9U',
'abstract': 'https://mega.nz/#!vCQyHQZT!zdeOg3VvT4922Z2UfxO51xgAfJD-NAK2nW7H_jMlilU',
'anime': 'https://mega.nz/#!vawjXISI!F7s13yRicxDA3QYqYDL2kjnc2K7Zk3DwCIYETREmBP4',
'ukiyo-e': 'https://drive.google.com/uc?id=1CHbJlci9NhVFifNQb3vCGu6zw4eqzvTd',
}
urls_torch = {
'celebahq': 'https://drive.google.com/uc?export=download&id=1lGcRwNoXy_uwXkD6sy43aAa-rMHRR7Ad',
'bedrooms': 'https://drive.google.com/uc?export=download&id=1r0_s83-XK2dKlyY3WjNYsfZ5-fnH8QgI',
'ffhq': 'https://drive.google.com/uc?export=download&id=1GcxTcLDPYxQqcQjeHpLUutGzwOlXXcks',
'cars': 'https://drive.google.com/uc?export=download&id=1aaUXHRHjQ9ww91x4mtPZD0w50fsIkXWt',
'cats': 'https://drive.google.com/uc?export=download&id=1JzA5iiS3qPrztVofQAjbb0N4xKdjOOyV',
'wikiart': 'https://drive.google.com/uc?export=download&id=1fN3noa7Rsl9slrDXsgZVDsYFxV0O08Vx',
}
if not checkpoint.is_file():
os.makedirs(checkpoint.parent, exist_ok=True)
if self.outclass in urls_torch:
download_ckpt(urls_torch[self.outclass], checkpoint)
else:
checkpoint_tf = checkpoint.with_suffix('.pkl')
if not checkpoint_tf.is_file():
download_ckpt(urls_tf[self.outclass], checkpoint_tf)
print('Converting TensorFlow checkpoint to PyTorch')
self.model.export_from_tf(checkpoint_tf)
self.model.load_weights(checkpoint)
def sample_latent(self, n_samples=1, seed=None, truncation=None):
if seed is None:
seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state
rng = np.random.RandomState(seed)
noise = torch.from_numpy(
rng.standard_normal(512 * n_samples)
.reshape(n_samples, 512)).float().to(self.device) #[N, 512]
if self.w_primary:
noise = self.model._modules['g_mapping'].forward(noise)
return noise
def get_max_latents(self):
return 18
def set_output_class(self, new_class):
if self.outclass != new_class:
raise RuntimeError('StyleGAN: cannot change output class without reloading')
def forward(self, x):
out = self.model.forward(x, latent_is_w=self.w_primary)
return 0.5*(out+1)
# Run model only until given layer
def partial_forward(self, x, layer_name):
mapping = self.model._modules['g_mapping']
G = self.model._modules['g_synthesis']
trunc = self.model._modules.get('truncation', lambda x : x)
if not self.w_primary:
x = mapping.forward(x) # handles list inputs
if isinstance(x, list):
x = torch.stack(x, dim=1)
else:
x = x.unsqueeze(1).expand(-1, 18, -1)
# Whole mapping
if 'g_mapping' in layer_name:
return
x = trunc(x)
if layer_name == 'truncation':
return
# Get names of children
def iterate(m, name, seen):
children = getattr(m, '_modules', [])
if len(children) > 0:
for child_name, module in children.items():
seen += iterate(module, f'{name}.{child_name}', seen)
return seen
else:
return [name]
# Generator
batch_size = x.size(0)
for i, (n, m) in enumerate(G.blocks.items()): # InputBlock or GSynthesisBlock
if i == 0:
r = m(x[:, 2*i:2*i+2])
else:
r = m(r, x[:, 2*i:2*i+2])
children = iterate(m, f'g_synthesis.blocks.{n}', [])
for c in children:
if layer_name in c: # substring
return
raise RuntimeError(f'Layer {layer_name} not encountered in partial_forward')
def set_noise_seed(self, seed):
G = self.model._modules['g_synthesis']
def for_each_child(this, name, func):
children = getattr(this, '_modules', [])
for child_name, module in children.items():
for_each_child(module, f'{name}.{child_name}', func)
func(this, name)
def modify(m, name):
if isinstance(m, stylegan.NoiseLayer):
H, W = [int(s) for s in name.split('.')[2].split('x')]
torch.random.manual_seed(seed)
m.noise = torch.randn(1, 1, H, W, device=self.device, dtype=torch.float32)
#m.noise = 1.0 # should be [N, 1, H, W], but this also works
for_each_child(G, 'g_synthesis', modify)
class GANZooModel(BaseModel):
def __init__(self, device, model_name):
super(GANZooModel, self).__init__(model_name, 'default')
self.device = device
self.base_model = torch.hub.load('facebookresearch/pytorch_GAN_zoo:hub',
model_name, pretrained=True, useGPU=(device.type == 'cuda'))
self.model = self.base_model.netG.to(self.device)
self.name = model_name
self.has_latent_residual = False
def sample_latent(self, n_samples=1, seed=0, truncation=None):
# Uses torch.randn
noise, _ = self.base_model.buildNoiseData(n_samples)
return noise
# Don't bother for now
def partial_forward(self, x, layer_name):
return self.forward(x)
def get_conditional_state(self, z):
return z[:, -20:] # last 20 = conditioning
def set_conditional_state(self, z, c):
z[:, -20:] = c
return z
def forward(self, x):
out = self.base_model.test(x)
return 0.5*(out+1)
class ProGAN(BaseModel):
def __init__(self, device, lsun_class=None):
super(ProGAN, self).__init__('ProGAN', lsun_class)
self.device = device
# These are downloaded by GANDissect
valid_classes = [ 'bedroom', 'churchoutdoor', 'conferenceroom', 'diningroom', 'kitchen', 'livingroom', 'restaurant' ]
assert self.outclass in valid_classes, \
f'Invalid LSUN class {self.outclass}, should be one of {valid_classes}'
self.load_model()
self.name = f'ProGAN-{self.outclass}'
self.has_latent_residual = False
def load_model(self):
checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints')
checkpoint = Path(checkpoint_root) / f'progan/{self.outclass}_lsun.pth'
if not checkpoint.is_file():
os.makedirs(checkpoint.parent, exist_ok=True)
url = f'http://netdissect.csail.mit.edu/data/ganmodel/karras/{self.outclass}_lsun.pth'
download_ckpt(url, checkpoint)
self.model = proggan.from_pth_file(str(checkpoint.resolve())).to(self.device)
def sample_latent(self, n_samples=1, seed=None, truncation=None):
if seed is None:
seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state
noise = zdataset.z_sample_for_model(self.model, n_samples, seed=seed)[...]
return noise.to(self.device)
def forward(self, x):
if isinstance(x, list):
assert len(x) == 1, "ProGAN only supports a single global latent"
x = x[0]
out = self.model.forward(x)
return 0.5*(out+1)
# Run model only until given layer
def partial_forward(self, x, layer_name):
assert isinstance(self.model, torch.nn.Sequential), 'Expected sequential model'
if isinstance(x, list):
assert len(x) == 1, "ProGAN only supports a single global latent"
x = x[0]
x = x.view(x.shape[0], x.shape[1], 1, 1)
for name, module in self.model._modules.items(): # ordered dict
x = module(x)
if name == layer_name:
return
raise RuntimeError(f'Layer {layer_name} not encountered in partial_forward')
class BigGAN(BaseModel):
def __init__(self, device, resolution, class_name, truncation=1.0):
super(BigGAN, self).__init__(f'BigGAN-{resolution}', class_name)
self.device = device
self.truncation = truncation
self.load_model(f'biggan-deep-{resolution}')
self.set_output_class(class_name or 'husky')
self.name = f'BigGAN-{resolution}-{self.outclass}-t{self.truncation}'
self.has_latent_residual = True
# Default implementaiton fails without an internet
# connection, even if the model has been cached
def load_model(self, name):
if name not in biggan.model.PRETRAINED_MODEL_ARCHIVE_MAP:
raise RuntimeError('Unknown BigGAN model name', name)
checkpoint_root = os.environ.get('GANCONTROL_CHECKPOINT_DIR', Path(__file__).parent / 'checkpoints')
model_path = Path(checkpoint_root) / name
os.makedirs(model_path, exist_ok=True)
model_file = model_path / biggan.model.WEIGHTS_NAME
config_file = model_path / biggan.model.CONFIG_NAME
model_url = biggan.model.PRETRAINED_MODEL_ARCHIVE_MAP[name]
config_url = biggan.model.PRETRAINED_CONFIG_ARCHIVE_MAP[name]
for filename, url in ((model_file, model_url), (config_file, config_url)):
if not filename.is_file():
print('Downloading', url)
with open(filename, 'wb') as f:
if url.startswith("s3://"):
biggan.s3_get(url, f)
else:
biggan.http_get(url, f)
self.model = biggan.BigGAN.from_pretrained(model_path).to(self.device)
def sample_latent(self, n_samples=1, truncation=None, seed=None):
if seed is None:
seed = np.random.randint(np.iinfo(np.int32).max) # use (reproducible) global rand state
noise_vector = biggan.truncated_noise_sample(truncation=truncation or self.truncation, batch_size=n_samples, seed=seed)
noise = torch.from_numpy(noise_vector) #[N, 128]
return noise.to(self.device)
# One extra for gen_z
def get_max_latents(self):
return len(self.model.config.layers) + 1
def get_conditional_state(self, z):
return self.v_class
def set_conditional_state(self, z, c):
self.v_class = c
def is_valid_class(self, class_id):
if isinstance(class_id, int):
return class_id < 1000
elif isinstance(class_id, str):
return biggan.one_hot_from_names([class_id.replace(' ', '_')]) is not None
else:
raise RuntimeError(f'Unknown class identifier {class_id}')
def set_output_class(self, class_id):
if isinstance(class_id, int):
self.v_class = torch.from_numpy(biggan.one_hot_from_int([class_id])).to(self.device)
self.outclass = f'class{class_id}'
elif isinstance(class_id, str):
self.outclass = class_id.replace(' ', '_')
self.v_class = torch.from_numpy(biggan.one_hot_from_names([class_id])).to(self.device)
else:
raise RuntimeError(f'Unknown class identifier {class_id}')
def forward(self, x):
# Duplicate along batch dimension
if isinstance(x, list):
c = self.v_class.repeat(x[0].shape[0], 1)
class_vector = len(x)*[c]
else:
class_vector = self.v_class.repeat(x.shape[0], 1)
out = self.model.forward(x, class_vector, self.truncation) # [N, 3, 128, 128], in [-1, 1]
return 0.5*(out+1)
# Run model only until given layer
# Used to speed up PCA sample collection
def partial_forward(self, x, layer_name):
if layer_name in ['embeddings', 'generator.gen_z']:
n_layers = 0
elif 'generator.layers' in layer_name:
layer_base = re.match('^generator\.layers\.[0-9]+', layer_name)[0]
n_layers = int(layer_base.split('.')[-1]) + 1
else:
n_layers = len(self.model.config.layers)
if not isinstance(x, list):
x = self.model.n_latents*[x]
if isinstance(self.v_class, list):
labels = [c.repeat(x[0].shape[0], 1) for c in class_label]
embed = [self.model.embeddings(l) for l in labels]
else:
class_label = self.v_class.repeat(x[0].shape[0], 1)
embed = len(x)*[self.model.embeddings(class_label)]
assert len(x) == self.model.n_latents, f'Expected {self.model.n_latents} latents, got {len(x)}'
assert len(embed) == self.model.n_latents, f'Expected {self.model.n_latents} class vectors, got {len(class_label)}'
cond_vectors = [torch.cat((z, e), dim=1) for (z, e) in zip(x, embed)]
# Generator forward
z = self.model.generator.gen_z(cond_vectors[0])
z = z.view(-1, 4, 4, 16 * self.model.generator.config.channel_width)
z = z.permute(0, 3, 1, 2).contiguous()
cond_idx = 1
for i, layer in enumerate(self.model.generator.layers[:n_layers]):
if isinstance(layer, biggan.GenBlock):
z = layer(z, cond_vectors[cond_idx], self.truncation)
cond_idx += 1
else:
z = layer(z)
return None
# Version 1: separate parameters
@singledispatch
def get_model(name, output_class, device, **kwargs):
# Check if optionally provided existing model can be reused
inst = kwargs.get('inst', None)
model = kwargs.get('model', None)
if inst or model:
cached = model or inst.model
network_same = (cached.model_name == name)
outclass_same = (cached.outclass == output_class)
can_change_class = ('BigGAN' in name)
if network_same and (outclass_same or can_change_class):
cached.set_output_class(output_class)
return cached
if name == 'DCGAN':
import warnings
warnings.filterwarnings("ignore", message="nn.functional.tanh is deprecated")
model = GANZooModel(device, 'DCGAN')
elif name == 'ProGAN':
model = ProGAN(device, output_class)
elif 'BigGAN' in name:
assert '-' in name, 'Please specify BigGAN resolution, e.g. BigGAN-512'
model = BigGAN(device, name.split('-')[-1], class_name=output_class)
elif name == 'StyleGAN':
model = StyleGAN(device, class_name=output_class)
elif name == 'StyleGAN2':
model = StyleGAN2(device, class_name=output_class)
else:
raise RuntimeError(f'Unknown model {name}')
return model
# Version 2: Config object
@get_model.register(Config)
def _(cfg, device, **kwargs):
kwargs['use_w'] = kwargs.get('use_w', cfg.use_w) # explicit arg can override cfg
return get_model(cfg.model, cfg.output_class, device, **kwargs)
# Version 1: separate parameters
@singledispatch
def get_instrumented_model(name, output_class, layers, device, **kwargs):
model = get_model(name, output_class, device, **kwargs)
model.eval()
inst = kwargs.get('inst', None)
if inst:
inst.close()
if not isinstance(layers, list):
layers = [layers]
# Verify given layer names
module_names = [name for (name, _) in model.named_modules()]
for layer_name in layers:
if not layer_name in module_names:
print(f"Layer '{layer_name}' not found in model!")
print("Available layers:", '\n'.join(module_names))
raise RuntimeError(f"Unknown layer '{layer_name}''")
# Reset StyleGANs to z mode for shape annotation
if hasattr(model, 'use_z'):
model.use_z()
from netdissect.modelconfig import create_instrumented_model
inst = create_instrumented_model(SimpleNamespace(
model = model,
layers = layers,
cuda = device.type == 'cuda',
gen = True,
latent_shape = model.get_latent_shape()
))
if kwargs.get('use_w', False):
model.use_w()
return inst
# Version 2: Config object
@get_instrumented_model.register(Config)
def _(cfg, device, **kwargs):
kwargs['use_w'] = kwargs.get('use_w', cfg.use_w) # explicit arg can override cfg
return get_instrumented_model(cfg.model, cfg.output_class, cfg.layer, device, **kwargs)
|