Spaces:
Runtime error
Runtime error
File size: 10,690 Bytes
e0c7c25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import torch, sys, os, argparse, textwrap, numbers, numpy, json, PIL
from torchvision import transforms
from torch.utils.data import TensorDataset
from netdissect.progress import default_progress, post_progress, desc_progress
from netdissect.progress import verbose_progress, print_progress
from netdissect.nethook import edit_layers
from netdissect.zdataset import standard_z_sample
from netdissect.autoeval import autoimport_eval
from netdissect.easydict import EasyDict
from netdissect.modelconfig import create_instrumented_model
help_epilog = '''\
Example:
python -m netdissect.evalablate \
--segmenter "netdissect.segmenter.UnifiedParsingSegmenter(segsizes=[256], segdiv='quad')" \
--model "proggan.from_pth_file('models/lsun_models/${SCENE}_lsun.pth')" \
--outdir dissect/dissectdir \
--classes mirror coffeetable tree \
--layers layer4 \
--size 1000
Output layout:
dissectdir/layer5/ablation/mirror-iqr.json
{ class: "mirror",
classnum: 43,
pixel_total: 41342300,
class_pixels: 1234531,
layer: "layer5",
ranking: "mirror-iqr",
ablation_units: [341, 23, 12, 142, 83, ...]
ablation_pixels: [143242, 132344, 429931, ...]
}
'''
def main():
# Training settings
def strpair(arg):
p = tuple(arg.split(':'))
if len(p) == 1:
p = p + p
return p
parser = argparse.ArgumentParser(description='Ablation eval',
epilog=textwrap.dedent(help_epilog),
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--model', type=str, default=None,
help='constructor for the model to test')
parser.add_argument('--pthfile', type=str, default=None,
help='filename of .pth file for the model')
parser.add_argument('--outdir', type=str, default='dissect', required=True,
help='directory for dissection output')
parser.add_argument('--layers', type=strpair, nargs='+',
help='space-separated list of layer names to edit' +
', in the form layername[:reportedname]')
parser.add_argument('--classes', type=str, nargs='+',
help='space-separated list of class names to ablate')
parser.add_argument('--metric', type=str, default='iou',
help='ordering metric for selecting units')
parser.add_argument('--unitcount', type=int, default=30,
help='number of units to ablate')
parser.add_argument('--segmenter', type=str,
help='directory containing segmentation dataset')
parser.add_argument('--netname', type=str, default=None,
help='name for network in generated reports')
parser.add_argument('--batch_size', type=int, default=5,
help='batch size for forward pass')
parser.add_argument('--size', type=int, default=200,
help='number of images to test')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA usage')
parser.add_argument('--quiet', action='store_true', default=False,
help='silences console output')
if len(sys.argv) == 1:
parser.print_usage(sys.stderr)
sys.exit(1)
args = parser.parse_args()
# Set up console output
verbose_progress(not args.quiet)
# Speed up pytorch
torch.backends.cudnn.benchmark = True
# Set up CUDA
args.cuda = not args.no_cuda and torch.cuda.is_available()
if args.cuda:
torch.backends.cudnn.benchmark = True
# Take defaults for model constructor etc from dissect.json settings.
with open(os.path.join(args.outdir, 'dissect.json')) as f:
dissection = EasyDict(json.load(f))
if args.model is None:
args.model = dissection.settings.model
if args.pthfile is None:
args.pthfile = dissection.settings.pthfile
if args.segmenter is None:
args.segmenter = dissection.settings.segmenter
# Instantiate generator
model = create_instrumented_model(args, gen=True, edit=True)
if model is None:
print('No model specified')
sys.exit(1)
# Instantiate model
device = next(model.parameters()).device
input_shape = model.input_shape
# 4d input if convolutional, 2d input if first layer is linear.
raw_sample = standard_z_sample(args.size, input_shape[1], seed=2).view(
(args.size,) + input_shape[1:])
dataset = TensorDataset(raw_sample)
# Create the segmenter
segmenter = autoimport_eval(args.segmenter)
# Now do the actual work.
labelnames, catnames = (
segmenter.get_label_and_category_names(dataset))
label_category = [catnames.index(c) if c in catnames else 0
for l, c in labelnames]
labelnum_from_name = {n[0]: i for i, n in enumerate(labelnames)}
segloader = torch.utils.data.DataLoader(dataset,
batch_size=args.batch_size, num_workers=10,
pin_memory=(device.type == 'cuda'))
# Index the dissection layers by layer name.
dissect_layer = {lrec.layer: lrec for lrec in dissection.layers}
# First, collect a baseline
for l in model.ablation:
model.ablation[l] = None
# For each sort-order, do an ablation
progress = default_progress()
for classname in progress(args.classes):
post_progress(c=classname)
for layername in progress(model.ablation):
post_progress(l=layername)
rankname = '%s-%s' % (classname, args.metric)
classnum = labelnum_from_name[classname]
try:
ranking = next(r for r in dissect_layer[layername].rankings
if r.name == rankname)
except:
print('%s not found' % rankname)
sys.exit(1)
ordering = numpy.argsort(ranking.score)
# Check if already done
ablationdir = os.path.join(args.outdir, layername, 'pixablation')
if os.path.isfile(os.path.join(ablationdir, '%s.json'%rankname)):
with open(os.path.join(ablationdir, '%s.json'%rankname)) as f:
data = EasyDict(json.load(f))
# If the unit ordering is not the same, something is wrong
if not all(a == o
for a, o in zip(data.ablation_units, ordering)):
continue
if len(data.ablation_effects) >= args.unitcount:
continue # file already done.
measurements = data.ablation_effects
measurements = measure_ablation(segmenter, segloader,
model, classnum, layername, ordering[:args.unitcount])
measurements = measurements.cpu().numpy().tolist()
os.makedirs(ablationdir, exist_ok=True)
with open(os.path.join(ablationdir, '%s.json'%rankname), 'w') as f:
json.dump(dict(
classname=classname,
classnum=classnum,
baseline=measurements[0],
layer=layername,
metric=args.metric,
ablation_units=ordering.tolist(),
ablation_effects=measurements[1:]), f)
def measure_ablation(segmenter, loader, model, classnum, layer, ordering):
total_bincount = 0
data_size = 0
device = next(model.parameters()).device
progress = default_progress()
for l in model.ablation:
model.ablation[l] = None
feature_units = model.feature_shape[layer][1]
feature_shape = model.feature_shape[layer][2:]
repeats = len(ordering)
total_scores = torch.zeros(repeats + 1)
for i, batch in enumerate(progress(loader)):
z_batch = batch[0]
model.ablation[layer] = None
tensor_images = model(z_batch.to(device))
seg = segmenter.segment_batch(tensor_images, downsample=2)
mask = (seg == classnum).max(1)[0]
downsampled_seg = torch.nn.functional.adaptive_avg_pool2d(
mask.float()[:,None,:,:], feature_shape)[:,0,:,:]
total_scores[0] += downsampled_seg.sum().cpu()
# Now we need to do an intervention for every location
# that had a nonzero downsampled_seg, if any.
interventions_needed = downsampled_seg.nonzero()
location_count = len(interventions_needed)
if location_count == 0:
continue
interventions_needed = interventions_needed.repeat(repeats, 1)
inter_z = batch[0][interventions_needed[:,0]].to(device)
inter_chan = torch.zeros(repeats, location_count, feature_units,
device=device)
for j, u in enumerate(ordering):
inter_chan[j:, :, u] = 1
inter_chan = inter_chan.view(len(inter_z), feature_units)
inter_loc = interventions_needed[:,1:]
scores = torch.zeros(len(inter_z))
batch_size = len(batch[0])
for j in range(0, len(inter_z), batch_size):
ibz = inter_z[j:j+batch_size]
ibl = inter_loc[j:j+batch_size].t()
imask = torch.zeros((len(ibz),) + feature_shape, device=ibz.device)
imask[(torch.arange(len(ibz)),) + tuple(ibl)] = 1
ibc = inter_chan[j:j+batch_size]
model.ablation[layer] = (
imask.float()[:,None,:,:] * ibc[:,:,None,None])
tensor_images = model(ibz)
seg = segmenter.segment_batch(tensor_images, downsample=2)
mask = (seg == classnum).max(1)[0]
downsampled_iseg = torch.nn.functional.adaptive_avg_pool2d(
mask.float()[:,None,:,:], feature_shape)[:,0,:,:]
scores[j:j+batch_size] = downsampled_iseg[
(torch.arange(len(ibz)),) + tuple(ibl)]
scores = scores.view(repeats, location_count).sum(1)
total_scores[1:] += scores
return total_scores
def count_segments(segmenter, loader, model):
total_bincount = 0
data_size = 0
progress = default_progress()
for i, batch in enumerate(progress(loader)):
tensor_images = model(z_batch.to(device))
seg = segmenter.segment_batch(tensor_images, downsample=2)
bc = (seg + index[:, None, None, None] * self.num_classes).view(-1
).bincount(minlength=z_batch.shape[0] * self.num_classes)
data_size += seg.shape[0] * seg.shape[2] * seg.shape[3]
total_bincount += batch_label_counts.float().sum(0)
normalized_bincount = total_bincount / data_size
return normalized_bincount
if __name__ == '__main__':
main()
|