Spaces:
Runtime error
Runtime error
File size: 22,228 Bytes
e0c7c25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 |
import os, torch, numpy, base64, json, re, threading, random
from torch.utils.data import TensorDataset, DataLoader
from collections import defaultdict
from netdissect.easydict import EasyDict
from netdissect.modelconfig import create_instrumented_model
from netdissect.runningstats import RunningQuantile
from netdissect.dissection import safe_dir_name
from netdissect.zdataset import z_sample_for_model
from PIL import Image
from io import BytesIO
class DissectionProject:
'''
DissectionProject understand how to drive a GanTester within a
dissection project directory structure: it caches data in files,
creates image files, and translates data between plain python data
types and the pytorch-specific tensors required by GanTester.
'''
def __init__(self, config, project_dir, path_url, public_host):
print('config done', project_dir)
self.use_cuda = torch.cuda.is_available()
self.dissect = config
self.project_dir = project_dir
self.path_url = path_url
self.public_host = public_host
self.cachedir = os.path.join(self.project_dir, 'cache')
self.tester = GanTester(
config.settings, dissectdir=project_dir,
device=torch.device('cuda') if self.use_cuda
else torch.device('cpu'))
self.stdz = []
def get_zs(self, size):
if size <= len(self.stdz):
return self.stdz[:size].tolist()
z_tensor = self.tester.standard_z_sample(size)
numpy_z = z_tensor.cpu().numpy()
self.stdz = numpy_z
return self.stdz.tolist()
def get_z(self, id):
if id < len(self.stdz):
return self.stdz[id]
return self.get_zs((id + 1) * 2)[id]
def get_zs_for_ids(self, ids):
max_id = max(ids)
if max_id >= len(self.stdz):
self.get_z(max_id)
return self.stdz[ids]
def get_layers(self):
result = []
layer_shapes = self.tester.layer_shapes()
for layer in self.tester.layers:
shape = layer_shapes[layer]
result.append(dict(
layer=layer,
channels=shape[1],
shape=[shape[2], shape[3]]))
return result
def get_units(self, layer):
try:
dlayer = [dl for dl in self.dissect['layers']
if dl['layer'] == layer][0]
except:
return None
dunits = dlayer['units']
result = [dict(unit=unit_num,
img='/%s/%s/s-image/%d-top.jpg' %
(self.path_url, layer, unit_num),
label=unit['iou_label'])
for unit_num, unit in enumerate(dunits)]
return result
def get_rankings(self, layer):
try:
dlayer = [dl for dl in self.dissect['layers']
if dl['layer'] == layer][0]
except:
return None
result = [dict(name=ranking['name'],
metric=ranking.get('metric', None),
scores=ranking['score'])
for ranking in dlayer['rankings']]
return result
def get_levels(self, layer, quantiles):
levels = self.tester.levels(
layer, torch.from_numpy(numpy.array(quantiles)))
return levels.cpu().numpy().tolist()
def generate_images(self, zs, ids, interventions, return_urls=False):
if ids is not None:
assert zs is None
zs = self.get_zs_for_ids(ids)
if not interventions:
# Do file caching when ids are given (and no ablations).
imgdir = os.path.join(self.cachedir, 'img', 'id')
os.makedirs(imgdir, exist_ok=True)
exist = set(os.listdir(imgdir))
unfinished = [('%d.jpg' % id) not in exist for id in ids]
needed_z_tensor = torch.tensor(zs[unfinished]).float().to(
self.tester.device)
needed_ids = numpy.array(ids)[unfinished]
# Generate image files for just the needed images.
if len(needed_z_tensor):
imgs = self.tester.generate_images(needed_z_tensor
).cpu().numpy()
for i, img in zip(needed_ids, imgs):
Image.fromarray(img.transpose(1, 2, 0)).save(
os.path.join(imgdir, '%d.jpg' % i), 'jpeg',
quality=99, optimize=True, progressive=True)
# Assemble a response.
imgurls = ['/%s/cache/img/id/%d.jpg'
% (self.path_url, i) for i in ids]
return [dict(id=i, d=d) for i, d in zip(ids, imgurls)]
# No file caching when ids are not given (or ablations are applied)
z_tensor = torch.tensor(zs).float().to(self.tester.device)
imgs = self.tester.generate_images(z_tensor,
intervention=decode_intervention_array(interventions,
self.tester.layer_shapes()),
).cpu().numpy()
numpy_z = z_tensor.cpu().numpy()
if return_urls:
randdir = '%03d' % random.randrange(1000)
imgdir = os.path.join(self.cachedir, 'img', 'uniq', randdir)
os.makedirs(imgdir, exist_ok=True)
startind = random.randrange(100000)
imgurls = []
for i, img in enumerate(imgs):
filename = '%d.jpg' % (i + startind)
Image.fromarray(img.transpose(1, 2, 0)).save(
os.path.join(imgdir, filename), 'jpeg',
quality=99, optimize=True, progressive=True)
image_url_path = ('/%s/cache/img/uniq/%s/%s'
% (self.path_url, randdir, filename))
imgurls.append(image_url_path)
tweet_filename = 'tweet-%d.html' % (i + startind)
tweet_url_path = ('/%s/cache/img/uniq/%s/%s'
% (self.path_url, randdir, tweet_filename))
with open(os.path.join(imgdir, tweet_filename), 'w') as f:
f.write(twitter_card(image_url_path, tweet_url_path,
self.public_host))
return [dict(d=d) for d in imgurls]
imgurls = [img2base64(img.transpose(1, 2, 0)) for img in imgs]
return [dict(d=d) for d in imgurls]
def get_features(self, ids, masks, layers, interventions):
zs = self.get_zs_for_ids(ids)
z_tensor = torch.tensor(zs).float().to(self.tester.device)
t_masks = torch.stack(
[torch.from_numpy(mask_to_numpy(mask)) for mask in masks]
)[:,None,:,:].to(self.tester.device)
t_features = self.tester.feature_stats(z_tensor, t_masks,
decode_intervention_array(interventions,
self.tester.layer_shapes()), layers)
# Convert torch arrays to plain python lists before returning.
return { layer: { key: value.cpu().numpy().tolist()
for key, value in feature.items() }
for layer, feature in t_features.items() }
def get_featuremaps(self, ids, layers, interventions):
zs = self.get_zs_for_ids(ids)
z_tensor = torch.tensor(zs).float().to(self.tester.device)
# Quantilized features are returned.
q_features = self.tester.feature_maps(z_tensor,
decode_intervention_array(interventions,
self.tester.layer_shapes()), layers)
# Scale them 0-255 and return them.
# TODO: turn them into pngs for returning.
return { layer: [
value.clamp(0, 1).mul(255).byte().cpu().numpy().tolist()
for value in valuelist ]
for layer, valuelist in q_features.items()
if (not layers) or (layer in layers) }
def get_recipes(self):
recipedir = os.path.join(self.project_dir, 'recipe')
if not os.path.isdir(recipedir):
return []
result = []
for filename in os.listdir(recipedir):
with open(os.path.join(recipedir, filename)) as f:
result.append(json.load(f))
return result
class GanTester:
'''
GanTester holds on to a specific model to test.
(1) loads and instantiates the GAN;
(2) instruments it at every layer so that units can be ablated
(3) precomputes z dimensionality, and output image dimensions.
'''
def __init__(self, args, dissectdir=None, device=None):
self.cachedir = os.path.join(dissectdir, 'cache')
self.device = device if device is not None else torch.device('cpu')
self.dissectdir = dissectdir
self.modellock = threading.Lock()
# Load the generator from the pth file.
args_copy = EasyDict(args)
args_copy.edit = True
model = create_instrumented_model(args_copy)
model.eval()
self.model = model
# Get the set of layers of interest.
# Default: all shallow children except last.
self.layers = sorted(model.retained_features().keys())
# Move it to CUDA if wanted.
model.to(device)
self.quantiles = {
layer: load_quantile_if_present(os.path.join(self.dissectdir,
safe_dir_name(layer)), 'quantiles.npz',
device=torch.device('cpu'))
for layer in self.layers }
def layer_shapes(self):
return self.model.feature_shape
def standard_z_sample(self, size=100, seed=1, device=None):
'''
Generate a standard set of random Z as a (size, z_dimension) tensor.
With the same random seed, it always returns the same z (e.g.,
the first one is always the same regardless of the size.)
'''
result = z_sample_for_model(self.model, size)
if device is not None:
result = result.to(device)
return result
def reset_intervention(self):
self.model.remove_edits()
def apply_intervention(self, intervention):
'''
Applies an ablation recipe of the form [(layer, unit, alpha)...].
'''
self.reset_intervention()
if not intervention:
return
for layer, (a, v) in intervention.items():
self.model.edit_layer(layer, ablation=a, replacement=v)
def generate_images(self, z_batch, intervention=None):
'''
Makes some images.
'''
with torch.no_grad(), self.modellock:
batch_size = 10
self.apply_intervention(intervention)
test_loader = DataLoader(TensorDataset(z_batch[:,:,None,None]),
batch_size=batch_size,
pin_memory=('cuda' == self.device.type
and z_batch.device.type == 'cpu'))
result_img = torch.zeros(
*((len(z_batch), 3) + self.model.output_shape[2:]),
dtype=torch.uint8, device=self.device)
for batch_num, [batch_z,] in enumerate(test_loader):
batch_z = batch_z.to(self.device)
out = self.model(batch_z)
result_img[batch_num*batch_size:
batch_num*batch_size+len(batch_z)] = (
(((out + 1) / 2) * 255).clamp(0, 255).byte())
return result_img
def get_layers(self):
return self.layers
def feature_stats(self, z_batch,
masks=None, intervention=None, layers=None):
feature_stat = defaultdict(dict)
with torch.no_grad(), self.modellock:
batch_size = 10
self.apply_intervention(intervention)
if masks is None:
masks = torch.ones(z_batch.size(0), 1, 1, 1,
device=z_batch.device, dtype=z_batch.dtype)
else:
assert masks.shape[0] == z_batch.shape[0]
assert masks.shape[1] == 1
test_loader = DataLoader(
TensorDataset(z_batch[:,:,None,None], masks),
batch_size=batch_size,
pin_memory=('cuda' == self.device.type
and z_batch.device.type == 'cpu'))
processed = 0
for batch_num, [batch_z, batch_m] in enumerate(test_loader):
batch_z, batch_m = [
d.to(self.device) for d in [batch_z, batch_m]]
# Run model but disregard output
self.model(batch_z)
processing = batch_z.shape[0]
for layer, feature in self.model.retained_features().items():
if layers is not None:
if layer not in layers:
continue
# Compute max features touching mask
resized_max = torch.nn.functional.adaptive_max_pool2d(
batch_m,
(feature.shape[2], feature.shape[3]))
max_feature = (feature * resized_max).view(
feature.shape[0], feature.shape[1], -1
).max(2)[0].max(0)[0]
if 'max' not in feature_stat[layer]:
feature_stat[layer]['max'] = max_feature
else:
torch.max(feature_stat[layer]['max'], max_feature,
out=feature_stat[layer]['max'])
# Compute mean features weighted by overlap with mask
resized_mean = torch.nn.functional.adaptive_avg_pool2d(
batch_m,
(feature.shape[2], feature.shape[3]))
mean_feature = (feature * resized_mean).view(
feature.shape[0], feature.shape[1], -1
).sum(2).sum(0) / (resized_mean.sum() + 1e-15)
if 'mean' not in feature_stat[layer]:
feature_stat[layer]['mean'] = mean_feature
else:
feature_stat[layer]['mean'] = (
processed * feature_mean[layer]['mean']
+ processing * mean_feature) / (
processed + processing)
processed += processing
# After summaries are done, also compute quantile stats
for layer, stats in feature_stat.items():
if self.quantiles.get(layer, None) is not None:
for statname in ['max', 'mean']:
stats['%s_quantile' % statname] = (
self.quantiles[layer].normalize(stats[statname]))
return feature_stat
def levels(self, layer, quantiles):
return self.quantiles[layer].quantiles(quantiles)
def feature_maps(self, z_batch, intervention=None, layers=None,
quantiles=True):
feature_map = defaultdict(list)
with torch.no_grad(), self.modellock:
batch_size = 10
self.apply_intervention(intervention)
test_loader = DataLoader(
TensorDataset(z_batch[:,:,None,None]),
batch_size=batch_size,
pin_memory=('cuda' == self.device.type
and z_batch.device.type == 'cpu'))
processed = 0
for batch_num, [batch_z] in enumerate(test_loader):
batch_z = batch_z.to(self.device)
# Run model but disregard output
self.model(batch_z)
processing = batch_z.shape[0]
for layer, feature in self.model.retained_features().items():
for single_featuremap in feature:
if quantiles:
feature_map[layer].append(self.quantiles[layer]
.normalize(single_featuremap))
else:
feature_map[layer].append(single_featuremap)
return feature_map
def load_quantile_if_present(outdir, filename, device):
filepath = os.path.join(outdir, filename)
if os.path.isfile(filepath):
data = numpy.load(filepath)
result = RunningQuantile(state=data)
result.to_(device)
return result
return None
if __name__ == '__main__':
test_main()
def mask_to_numpy(mask_record):
# Detect a png image mask.
bitstring = mask_record['bitstring']
bitnumpy = None
default_shape = (256, 256)
if 'image/png;base64,' in bitstring:
bitnumpy = base642img(bitstring)
default_shape = bitnumpy.shape[:2]
# Set up results
shape = mask_record.get('shape', None)
if not shape: # None or empty []
shape = default_shape
result = numpy.zeros(shape=shape, dtype=numpy.float32)
bitbounds = mask_record.get('bitbounds', None)
if not bitbounds: # None or empty []
bitbounds = ([0] * len(result.shape)) + list(result.shape)
start = bitbounds[:len(result.shape)]
end = bitbounds[len(result.shape):]
if bitnumpy is not None:
if bitnumpy.shape[2] == 4:
# Mask is any nontransparent bits in the alpha channel if present
result[start[0]:end[0], start[1]:end[1]] = (bitnumpy[:,:,3] > 0)
else:
# Or any nonwhite pixels in the red channel if no alpha.
result[start[0]:end[0], start[1]:end[1]] = (bitnumpy[:,:,0] < 255)
return result
else:
# Or bitstring can be just ones and zeros.
indexes = start.copy()
bitindex = 0
while True:
result[tuple(indexes)] = (bitstring[bitindex] != '0')
for ii in range(len(indexes) - 1, -1, -1):
if indexes[ii] < end[ii] - 1:
break
indexes[ii] = start[ii]
else:
assert (bitindex + 1) == len(bitstring)
return result
indexes[ii] += 1
bitindex += 1
def decode_intervention_array(interventions, layer_shapes):
result = {}
for channels in [decode_intervention(intervention, layer_shapes)
for intervention in (interventions or [])]:
for layer, channel in channels.items():
if layer not in result:
result[layer] = channel
continue
accum = result[layer]
newalpha = 1 - (1 - channel[:1]) * (1 - accum[:1])
newvalue = (accum[1:] * accum[:1] * (1 - channel[:1]) +
channel[1:] * channel[:1]) / (newalpha + 1e-40)
accum[:1] = newalpha
accum[1:] = newvalue
return result
def decode_intervention(intervention, layer_shapes):
# Every plane of an intervention is a solid choice of activation
# over a set of channels, with a mask applied to alpha-blended channels
# (when the mask resolution is different from the feature map, it can
# be either a max-pooled or average-pooled to the proper resolution).
# This can be reduced to a single alpha-blended featuremap.
if intervention is None:
return None
mask = intervention.get('mask', None)
if mask:
mask = torch.from_numpy(mask_to_numpy(mask))
maskpooling = intervention.get('maskpooling', 'max')
channels = {} # layer -> ([alpha, val], c)
for arec in intervention.get('ablations', []):
unit = arec['unit']
layer = arec['layer']
alpha = arec.get('alpha', 1.0)
if alpha is None:
alpha = 1.0
value = arec.get('value', 0.0)
if value is None:
value = 0.0
if alpha != 0.0 or value != 0.0:
if layer not in channels:
channels[layer] = torch.zeros(2, *layer_shapes[layer][1:])
channels[layer][0, unit] = alpha
channels[layer][1, unit] = value
if mask is not None:
for layer in channels:
layer_shape = layer_shapes[layer][2:]
if maskpooling == 'mean':
layer_mask = torch.nn.functional.adaptive_avg_pool2d(
mask[None,None,...], layer_shape)[0]
else:
layer_mask = torch.nn.functional.adaptive_max_pool2d(
mask[None,None,...], layer_shape)[0]
channels[layer][0] *= layer_mask
return channels
def img2base64(imgarray, for_html=True, image_format='jpeg'):
'''
Converts a numpy array to a jpeg base64 url
'''
input_image_buff = BytesIO()
Image.fromarray(imgarray).save(input_image_buff, image_format,
quality=99, optimize=True, progressive=True)
res = base64.b64encode(input_image_buff.getvalue()).decode('ascii')
if for_html:
return 'data:image/' + image_format + ';base64,' + res
else:
return res
def base642img(stringdata):
stringdata = re.sub('^(?:data:)?image/\w+;base64,', '', stringdata)
im = Image.open(BytesIO(base64.b64decode(stringdata)))
return numpy.array(im)
def twitter_card(image_path, tweet_path, public_host):
return '''\
<!doctype html>
<html>
<head>
<meta name="twitter:card" content="summary_large_image" />
<meta name="twitter:title" content="Painting with GANs from MIT-IBM Watson AI Lab" />
<meta name="twitter:description" content="This demo lets you modify a selection of meaningful GAN units for a generated image by simply painting." />
<meta name="twitter:image" content="http://{public_host}{image_path}" />
<meta name="twitter:url" content="http://{public_host}{tweet_path}" />
<meta http-equiv="refresh" content="10; url=http://bit.ly/ganpaint">
</head>
<style>
body {{ font: 12px Arial, sans-serif; }}
</style>
<body>
<center>
<h1>Painting with GANs from MIT-IBM Watson AI Lab</h1>
<p>This demo lets you modify a selection of meatningful GAN units for a generated image by simply painting.</p>
<img src="{image_path}">
<p>Redirecting to
<a href="http://bit.ly/ganpaint">GANPaint</a>
</p>
</center>
</body>
'''.format(
image_path=image_path,
tweet_path=tweet_path,
public_host=public_host)
|