Spaces:
Runtime error
Runtime error
Upload 9 files
Browse files"initial"
- .gitattributes +35 -35
- .gitignore +1 -0
- Dockerfile +20 -0
- README.md +10 -10
- api.py +52 -0
- app.py +34 -0
- docker-compose.yml +8 -0
- requirements.txt +98 -0
- utils.py +396 -0
.gitattributes
CHANGED
@@ -1,35 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
main.py
|
Dockerfile
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use the official Python image
|
2 |
+
FROM python:3.12-slim
|
3 |
+
|
4 |
+
# Set environment variables
|
5 |
+
ENV PYTHONUNBUFFERED=1
|
6 |
+
WORKDIR /app
|
7 |
+
|
8 |
+
# Copy and install dependencies
|
9 |
+
COPY requirements.txt ./
|
10 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
11 |
+
|
12 |
+
# Copy application code
|
13 |
+
COPY . /app
|
14 |
+
|
15 |
+
# Expose necessary ports
|
16 |
+
EXPOSE 7860 8501
|
17 |
+
|
18 |
+
# Start both FastAPI and Streamlit services
|
19 |
+
CMD ["sh", "-c", "uvicorn api:app --host 0.0.0.0 --port 8000 & streamlit run main.py --server.port 8501 --server.address 0.0.0.0"]
|
20 |
+
#
|
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
-
---
|
2 |
-
title: Company Sentiment
|
3 |
-
emoji: 🚀
|
4 |
-
colorFrom: pink
|
5 |
-
colorTo: gray
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
---
|
9 |
-
|
10 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: Company Sentiment
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: pink
|
5 |
+
colorTo: gray
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
---
|
9 |
+
|
10 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
api.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
from utils import (
|
3 |
+
fetch_from_web,
|
4 |
+
analyze_sentiment,
|
5 |
+
generate_comparative_sentiment,
|
6 |
+
generate_final_report,
|
7 |
+
get_summaries_by_sentiment,
|
8 |
+
translate,
|
9 |
+
text_to_speech,
|
10 |
+
)
|
11 |
+
|
12 |
+
app = FastAPI()
|
13 |
+
|
14 |
+
|
15 |
+
@app.get("/home")
|
16 |
+
def main(company_name: str, model_provider: str):
|
17 |
+
web_results = fetch_from_web(company_name)
|
18 |
+
|
19 |
+
if "sources" not in web_results:
|
20 |
+
return {"error": "No sources found."}
|
21 |
+
|
22 |
+
sentiment_output = [
|
23 |
+
analyze_sentiment(article, model_provider)
|
24 |
+
for article in web_results["sources"][:5]
|
25 |
+
]
|
26 |
+
|
27 |
+
comparative_sentiment = generate_comparative_sentiment(sentiment_output)
|
28 |
+
|
29 |
+
positive_summary, negative_summary, neutral_summary = get_summaries_by_sentiment(
|
30 |
+
sentiment_output
|
31 |
+
)
|
32 |
+
|
33 |
+
final_report = generate_final_report(
|
34 |
+
positive_summary,
|
35 |
+
negative_summary,
|
36 |
+
neutral_summary,
|
37 |
+
comparative_sentiment,
|
38 |
+
model_provider,
|
39 |
+
)
|
40 |
+
|
41 |
+
hindi_translation = translate(final_report, model_provider)
|
42 |
+
audio_path = text_to_speech(hindi_translation)
|
43 |
+
|
44 |
+
return {
|
45 |
+
"company_name": company_name,
|
46 |
+
"articles": sentiment_output,
|
47 |
+
"comparative_sentiment": comparative_sentiment,
|
48 |
+
"final_report": final_report,
|
49 |
+
"hindi_translation": hindi_translation,
|
50 |
+
"audio_url": audio_path,
|
51 |
+
}
|
52 |
+
#
|
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
|
4 |
+
st.title("Company Sentiment Analyzer")
|
5 |
+
|
6 |
+
company_name = st.text_input("Enter Company Name", "Tesla")
|
7 |
+
model_provider = st.selectbox("Model Provider", options=["Ollama", "Groq"])
|
8 |
+
|
9 |
+
if st.button("Fetch Sentiment Data"):
|
10 |
+
api_url = (
|
11 |
+
f"http://localhost:8000/home?"
|
12 |
+
f"company_name={company_name}&model_provider={model_provider}"
|
13 |
+
)
|
14 |
+
|
15 |
+
try:
|
16 |
+
response = requests.get(api_url)
|
17 |
+
response.raise_for_status()
|
18 |
+
|
19 |
+
data = response.json()
|
20 |
+
|
21 |
+
st.subheader("Company Name")
|
22 |
+
st.write(data.get("company_name"))
|
23 |
+
|
24 |
+
st.subheader("Final Report")
|
25 |
+
st.write(data.get("final_report"))
|
26 |
+
|
27 |
+
st.subheader("🔊 Audio Output")
|
28 |
+
audio_file = "output.mp3"
|
29 |
+
if audio_file:
|
30 |
+
st.audio(audio_file)
|
31 |
+
|
32 |
+
except requests.exceptions.RequestException as e:
|
33 |
+
st.error(f"Error fetching data: {e}")
|
34 |
+
#
|
docker-compose.yml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: '3'
|
2 |
+
services:
|
3 |
+
web:
|
4 |
+
build: .
|
5 |
+
ports:
|
6 |
+
- "7860:7860"
|
7 |
+
- "8501:8501"
|
8 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiohappyeyeballs==2.6.1
|
2 |
+
aiohttp==3.11.14
|
3 |
+
aiosignal==1.3.2
|
4 |
+
altair==5.5.0
|
5 |
+
annotated-types==0.7.0
|
6 |
+
anyio==4.9.0
|
7 |
+
asttokens==3.0.0
|
8 |
+
attrs==25.3.0
|
9 |
+
blinker==1.9.0
|
10 |
+
cachetools==5.5.2
|
11 |
+
certifi==2025.1.31
|
12 |
+
charset-normalizer==3.4.1
|
13 |
+
click==8.1.8
|
14 |
+
colorama==0.4.6
|
15 |
+
comm==0.2.2
|
16 |
+
debugpy==1.8.13
|
17 |
+
decorator==5.2.1
|
18 |
+
distro==1.9.0
|
19 |
+
docstring-parser==0.16
|
20 |
+
dotenv==0.9.9
|
21 |
+
executing==2.2.0
|
22 |
+
fastapi==0.115.11
|
23 |
+
frozenlist==1.5.0
|
24 |
+
gitdb==4.0.12
|
25 |
+
gitpython==3.1.44
|
26 |
+
groq==0.20.0
|
27 |
+
h11==0.14.0
|
28 |
+
httpcore==1.0.7
|
29 |
+
httpx==0.28.1
|
30 |
+
idna==3.10
|
31 |
+
instructor==1.7.7
|
32 |
+
ipykernel==6.29.5
|
33 |
+
ipython==9.0.2
|
34 |
+
ipython-pygments-lexers==1.1.1
|
35 |
+
jedi==0.19.2
|
36 |
+
jinja2==3.1.6
|
37 |
+
jiter==0.8.2
|
38 |
+
jsonschema==4.23.0
|
39 |
+
jsonschema-specifications==2024.10.1
|
40 |
+
jupyter-client==8.6.3
|
41 |
+
jupyter-core==5.7.2
|
42 |
+
markdown-it-py==3.0.0
|
43 |
+
markupsafe==3.0.2
|
44 |
+
matplotlib-inline==0.1.7
|
45 |
+
mdurl==0.1.2
|
46 |
+
multidict==6.2.0
|
47 |
+
narwhals==1.31.0
|
48 |
+
nest-asyncio==1.6.0
|
49 |
+
numpy==2.2.4
|
50 |
+
ollama==0.4.7
|
51 |
+
openai==1.66.5
|
52 |
+
packaging==24.2
|
53 |
+
pandas==2.2.3
|
54 |
+
parso==0.8.4
|
55 |
+
pillow==11.1.0
|
56 |
+
platformdirs==4.3.6
|
57 |
+
prompt-toolkit==3.0.50
|
58 |
+
propcache==0.3.0
|
59 |
+
protobuf==5.29.3
|
60 |
+
psutil==7.0.0
|
61 |
+
pure-eval==0.2.3
|
62 |
+
pyarrow==19.0.1
|
63 |
+
pydantic==2.10.6
|
64 |
+
pydantic-core==2.27.2
|
65 |
+
pydeck==0.9.1
|
66 |
+
pygments==2.19.1
|
67 |
+
python-dateutil==2.9.0.post0
|
68 |
+
python-dotenv==1.0.1
|
69 |
+
pytz==2025.1
|
70 |
+
pywin32==310
|
71 |
+
pyzmq==26.3.0
|
72 |
+
referencing==0.36.2
|
73 |
+
regex==2024.11.6
|
74 |
+
requests==2.32.3
|
75 |
+
rich==13.9.4
|
76 |
+
rpds-py==0.23.1
|
77 |
+
shellingham==1.5.4
|
78 |
+
six==1.17.0
|
79 |
+
smmap==5.0.2
|
80 |
+
sniffio==1.3.1
|
81 |
+
stack-data==0.6.3
|
82 |
+
starlette==0.46.1
|
83 |
+
streamlit==1.43.2
|
84 |
+
tavily-python==0.5.1
|
85 |
+
tenacity==9.0.0
|
86 |
+
tiktoken==0.9.0
|
87 |
+
toml==0.10.2
|
88 |
+
tornado==6.4.2
|
89 |
+
tqdm==4.67.1
|
90 |
+
traitlets==5.14.3
|
91 |
+
typer==0.15.2
|
92 |
+
typing-extensions==4.12.2
|
93 |
+
tzdata==2025.1
|
94 |
+
urllib3==2.3.0
|
95 |
+
uvicorn==0.34.0
|
96 |
+
watchdog==6.0.0
|
97 |
+
wcwidth==0.2.13
|
98 |
+
yarl==1.18.3
|
utils.py
ADDED
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Literal, List
|
3 |
+
from tavily import TavilyClient
|
4 |
+
from pydantic import BaseModel
|
5 |
+
from ollama import chat
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from groq import Groq
|
8 |
+
import instructor
|
9 |
+
import requests
|
10 |
+
|
11 |
+
GROQ_API_KEY = "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"
|
12 |
+
ELEVEN_LABS_API_KEY = "sk_a927222500aab9665f83f078b92e833e7ec1389ee68238c0"
|
13 |
+
TAVILY_API_KEY = "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"
|
14 |
+
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
|
18 |
+
def fetch_from_web(query):
|
19 |
+
tavily_client = TavilyClient(api_key=TAVILY_API_KEY)
|
20 |
+
response = tavily_client.search(
|
21 |
+
query,
|
22 |
+
include_raw_content=True,
|
23 |
+
max_results=10,
|
24 |
+
topic="news",
|
25 |
+
search_depth="basic"
|
26 |
+
)
|
27 |
+
return {"sources": response['results']}
|
28 |
+
|
29 |
+
|
30 |
+
class Sentiment(BaseModel):
|
31 |
+
summary: str
|
32 |
+
reasoning: str
|
33 |
+
topics: List[str]
|
34 |
+
sentiment: Literal['positive', 'negative', 'neutral']
|
35 |
+
|
36 |
+
|
37 |
+
def analyze_sentiment(article, model_provider):
|
38 |
+
sentiment_prompt = f"""
|
39 |
+
Analyze the following news article about a company:
|
40 |
+
|
41 |
+
1. **Summary**: Provide a comprehensive summary of the article's key points.
|
42 |
+
|
43 |
+
2. **Sentiment Analysis**:
|
44 |
+
- Classify the overall sentiment toward the company as: POSITIVE, NEGATIVE, or NEUTRAL
|
45 |
+
- Support your classification with specific quotes, tone analysis, and factual evidence from the article
|
46 |
+
- Explain your reasoning for this sentiment classification in 2 to 3 lines.
|
47 |
+
|
48 |
+
3. **Key Topics**:
|
49 |
+
- Identify 3-5 main topics discussed in the article
|
50 |
+
- Only give the name of the topics
|
51 |
+
|
52 |
+
Be as detailed and objective as possible in your reasoning.
|
53 |
+
|
54 |
+
Article Title: {article['title']}
|
55 |
+
|
56 |
+
Article: {article['raw_content']}
|
57 |
+
"""
|
58 |
+
|
59 |
+
try:
|
60 |
+
if model_provider == "Ollama":
|
61 |
+
response = chat(
|
62 |
+
messages=[
|
63 |
+
{
|
64 |
+
'role': 'user',
|
65 |
+
'content': sentiment_prompt
|
66 |
+
}
|
67 |
+
],
|
68 |
+
model='llama3.2:3b',
|
69 |
+
format=Sentiment.model_json_schema(),
|
70 |
+
)
|
71 |
+
|
72 |
+
sentiment_output = Sentiment.model_validate_json(response.message.content)
|
73 |
+
|
74 |
+
final_dict = {
|
75 |
+
"title": article["title"],
|
76 |
+
"summary": sentiment_output.summary,
|
77 |
+
"reasoning": sentiment_output.reasoning,
|
78 |
+
"topics": sentiment_output.topics,
|
79 |
+
"sentiment": sentiment_output.sentiment
|
80 |
+
}
|
81 |
+
else:
|
82 |
+
llm = Groq(api_key=GROQ_API_KEY)
|
83 |
+
llm = instructor.from_groq(llm, mode=instructor.Mode.TOOLS)
|
84 |
+
|
85 |
+
resp = llm.chat.completions.create(
|
86 |
+
model="llama-3.3-70b-versatile",
|
87 |
+
messages=[
|
88 |
+
{
|
89 |
+
"role": "user",
|
90 |
+
"content": sentiment_prompt,
|
91 |
+
}
|
92 |
+
],
|
93 |
+
response_model=Sentiment,
|
94 |
+
)
|
95 |
+
|
96 |
+
sentiment_output = resp.model_dump()
|
97 |
+
|
98 |
+
final_dict = {
|
99 |
+
"title": article["title"],
|
100 |
+
"summary": sentiment_output.get("summary"),
|
101 |
+
"reasoning": sentiment_output.get("reasoning"),
|
102 |
+
"topics": sentiment_output.get("topics"),
|
103 |
+
"sentiment": sentiment_output.get("sentiment")
|
104 |
+
}
|
105 |
+
|
106 |
+
return final_dict
|
107 |
+
|
108 |
+
except Exception as e:
|
109 |
+
print(f"Error parsing sentiment output: {e}")
|
110 |
+
return None
|
111 |
+
|
112 |
+
|
113 |
+
def generate_comparative_sentiment(articles):
|
114 |
+
sentiment_counts = {"Positive": 0, "Negative": 0, "Neutral": 0}
|
115 |
+
|
116 |
+
for article in articles:
|
117 |
+
sentiment = article.get("sentiment", "").lower()
|
118 |
+
if sentiment == "positive":
|
119 |
+
sentiment_counts["Positive"] += 1
|
120 |
+
elif sentiment == "negative":
|
121 |
+
sentiment_counts["Negative"] += 1
|
122 |
+
elif sentiment == "neutral":
|
123 |
+
sentiment_counts["Neutral"] += 1
|
124 |
+
|
125 |
+
all_topics = []
|
126 |
+
for article in articles:
|
127 |
+
all_topics.extend(article.get("topics", []))
|
128 |
+
|
129 |
+
unique_topics = set(all_topics)
|
130 |
+
|
131 |
+
topic_counts = {}
|
132 |
+
|
133 |
+
for topic in unique_topics:
|
134 |
+
count = all_topics.count(topic)
|
135 |
+
topic_counts[topic] = count
|
136 |
+
|
137 |
+
common_topics = [topic for topic, count in topic_counts.items() if count > 1]
|
138 |
+
unique_topics = {}
|
139 |
+
|
140 |
+
for i, article in enumerate(articles):
|
141 |
+
article_topics = set(article.get("topics", []))
|
142 |
+
for j, other_article in enumerate(articles):
|
143 |
+
if i != j:
|
144 |
+
other_topics = set(other_article.get("topics", []))
|
145 |
+
unique_topics[f"Unique Topics in Article {i+1}"] = list(article_topics - other_topics)
|
146 |
+
|
147 |
+
comparative_sentiment = {
|
148 |
+
"Sentiment Distribution": sentiment_counts,
|
149 |
+
"Coverage Differences": "coverage_differences",
|
150 |
+
"Topic Overlap": {
|
151 |
+
"Common Topics": common_topics,
|
152 |
+
"Unique Topics in Article 1": unique_topics.get("Unique Topics in Article 1", []),
|
153 |
+
"Unique Topics in Article 2": unique_topics.get("Unique Topics in Article 2", []),
|
154 |
+
"Unique Topics in Article 3": unique_topics.get("Unique Topics in Article 3", []),
|
155 |
+
"Unique Topics in Article 4": unique_topics.get("Unique Topics in Article 4", []),
|
156 |
+
"Unique Topics in Article 5": unique_topics.get("Unique Topics in Article 5", []),
|
157 |
+
"Unique Topics in Article 6": unique_topics.get("Unique Topics in Article 6", []),
|
158 |
+
"Unique Topics in Article 7": unique_topics.get("Unique Topics in Article 7", []),
|
159 |
+
"Unique Topics in Article 8": unique_topics.get("Unique Topics in Article 8", []),
|
160 |
+
"Unique Topics in Article 9": unique_topics.get("Unique Topics in Article 9", []),
|
161 |
+
"Unique Topics in Article 10": unique_topics.get("Unique Topics in Article 10", [])
|
162 |
+
},
|
163 |
+
}
|
164 |
+
|
165 |
+
return comparative_sentiment
|
166 |
+
|
167 |
+
|
168 |
+
def get_summaries_by_sentiment(articles):
|
169 |
+
pos_sum = []
|
170 |
+
neg_sum = []
|
171 |
+
neutral_sum = []
|
172 |
+
|
173 |
+
for article in articles:
|
174 |
+
sentiment = article.get("sentiment", "").lower()
|
175 |
+
title = article.get("title", "No Title")
|
176 |
+
summary = article.get("summary", "No Summary")
|
177 |
+
|
178 |
+
article_text = f'Title: {title}\nSummary: {summary}'
|
179 |
+
|
180 |
+
if sentiment == "positive":
|
181 |
+
pos_sum.append(article_text)
|
182 |
+
elif sentiment == "negative":
|
183 |
+
neg_sum.append(article_text)
|
184 |
+
elif sentiment == "neutral":
|
185 |
+
neutral_sum.append(article_text)
|
186 |
+
|
187 |
+
pos_sum = "\n\n".join(pos_sum) if pos_sum else "No positive articles available."
|
188 |
+
neg_sum = "\n\n".join(neg_sum) if neg_sum else "No negative articles available."
|
189 |
+
neutral_sum = "\n\n".join(neutral_sum) if neutral_sum else "No neutral articles available."
|
190 |
+
|
191 |
+
return pos_sum, neg_sum, neutral_sum
|
192 |
+
|
193 |
+
|
194 |
+
def comparative_analysis(pos_sum, neg_sum, neutral_sum, model_provider):
|
195 |
+
prompt = f"""
|
196 |
+
Perform a detailed comparative analysis of the sentiment across three categories of articles (Positive, Negative, and Neutral) about a specific company. Address the following aspects:
|
197 |
+
|
198 |
+
1. **Sentiment Breakdown**: Identify how each category (positive, negative, and neutral) portrays the company. Highlight the language, tone, and emotional cues that shape the sentiment.
|
199 |
+
|
200 |
+
2. **Key Themes and Topics**: Compare the primary themes and narratives within each sentiment group. What aspects of the company's operations, performance, or reputation does each category focus on?
|
201 |
+
|
202 |
+
3. **Perceived Company Image**: Analyze how each sentiment type influences public perception of the company. What impression is created by positive vs. negative vs. neutral coverage?
|
203 |
+
|
204 |
+
4. **Bias and Framing**: Evaluate whether any of the articles reflect explicit biases or specific agendas regarding the company. Are there patterns in how the company is framed across different sentiments?
|
205 |
+
|
206 |
+
5. **Market or Stakeholder Impact**: Discuss potential effects on stakeholders (e.g., investors, customers, regulators) based on the sentiment of each article type.
|
207 |
+
|
208 |
+
6. **Comparative Insights**: Provide a concise summary of the major differences and commonalities between the three sentiment groups. What overall narrative emerges about the company?
|
209 |
+
|
210 |
+
### Positive Articles:
|
211 |
+
{pos_sum}
|
212 |
+
|
213 |
+
### Negative Articles:
|
214 |
+
{neg_sum}
|
215 |
+
|
216 |
+
### Neutral Articles:
|
217 |
+
{neutral_sum}
|
218 |
+
"""
|
219 |
+
|
220 |
+
if model_provider == "Ollama":
|
221 |
+
response = chat(
|
222 |
+
messages=[
|
223 |
+
{
|
224 |
+
'role': 'user',
|
225 |
+
'content': prompt
|
226 |
+
}
|
227 |
+
],
|
228 |
+
model='llama3.2:3b'
|
229 |
+
)
|
230 |
+
response = response.message.content
|
231 |
+
|
232 |
+
else:
|
233 |
+
llm = Groq(api_key=GROQ_API_KEY)
|
234 |
+
|
235 |
+
chat_completion = llm.chat.completions.create(
|
236 |
+
messages=[
|
237 |
+
{
|
238 |
+
"role": "user",
|
239 |
+
"content": prompt[:5000],
|
240 |
+
}
|
241 |
+
],
|
242 |
+
model="llama-3.3-70b-versatile",
|
243 |
+
)
|
244 |
+
response = chat_completion.choices[0].message.content
|
245 |
+
|
246 |
+
return response
|
247 |
+
|
248 |
+
|
249 |
+
def generate_final_report(pos_sum, neg_sum, neutral_sum, comparative_sentiment, model_provider):
|
250 |
+
final_report_prompt = f"""
|
251 |
+
Corporate News Sentiment Analysis Report:
|
252 |
+
|
253 |
+
### 1. Executive Summary
|
254 |
+
- Overview of sentiment distribution: {comparative_sentiment["Sentiment Distribution"]['Positive']} positive, {comparative_sentiment["Sentiment Distribution"]['Negative']} negative, {comparative_sentiment["Sentiment Distribution"]['Neutral']} neutral.
|
255 |
+
- Highlight the dominant narrative shaping the company's perception.
|
256 |
+
- Summarize key drivers behind positive and negative sentiments.
|
257 |
+
|
258 |
+
### 2. Media Coverage Analysis
|
259 |
+
- Identify major news sources covering the company.
|
260 |
+
- Highlight patterns in coverage across platforms (e.g., frequency, timing).
|
261 |
+
- Identify whether media sentiment shifts over time.
|
262 |
+
|
263 |
+
### 3. Sentiment Breakdown
|
264 |
+
- **Positive Sentiment:**
|
265 |
+
* Titles and sources: {pos_sum}
|
266 |
+
* Key themes, notable quotes, and focal areas (e.g., product, leadership).
|
267 |
+
- **Negative Sentiment:**
|
268 |
+
* Titles and sources: {neg_sum}
|
269 |
+
* Key themes, notable quotes, and areas of concern.
|
270 |
+
- **Neutral Sentiment:**
|
271 |
+
* Titles and sources: {neutral_sum}
|
272 |
+
* Key themes and neutral narratives.
|
273 |
+
|
274 |
+
### 4. Narrative Analysis
|
275 |
+
- Identify primary storylines about the company.
|
276 |
+
- Analyze how the company is positioned (positive, neutral, negative).
|
277 |
+
- Detect shifts or emerging narratives over time.
|
278 |
+
|
279 |
+
### 5. Key Drivers of Sentiment
|
280 |
+
- Identify specific events, announcements, or actions driving media sentiment.
|
281 |
+
- Evaluate sentiment linked to industry trends vs. company-specific factors.
|
282 |
+
- Highlight company strengths and weaknesses based on media portrayal.
|
283 |
+
|
284 |
+
### 6. Competitive Context
|
285 |
+
- Identify competitor comparisons.
|
286 |
+
- Analyze how media sentiment about the company compares to industry standards.
|
287 |
+
- Highlight competitive advantages or concerns raised by the media.
|
288 |
+
|
289 |
+
### 7. Stakeholder Perspective
|
290 |
+
- Identify how key stakeholders (e.g., investors, customers, regulators) are represented.
|
291 |
+
- Analyze stakeholder concerns and reputation risks/opportunities.
|
292 |
+
|
293 |
+
### 8. Recommendations
|
294 |
+
- Suggest strategies to mitigate negative sentiment.
|
295 |
+
- Recommend approaches to amplify positive narratives.
|
296 |
+
- Provide messaging suggestions for future announcements.
|
297 |
+
|
298 |
+
### 9. Appendix
|
299 |
+
- Full article details (title, publication, date, author, URL).
|
300 |
+
- Sentiment scoring methodology.
|
301 |
+
- Media monitoring metrics (reach, engagement, etc.).
|
302 |
+
"""
|
303 |
+
|
304 |
+
if model_provider == "Ollama":
|
305 |
+
final_report = chat(
|
306 |
+
messages=[
|
307 |
+
{
|
308 |
+
'role': 'user',
|
309 |
+
'content': final_report_prompt
|
310 |
+
}
|
311 |
+
],
|
312 |
+
model='llama3.2:3b'
|
313 |
+
)
|
314 |
+
response = final_report.message.content
|
315 |
+
|
316 |
+
else:
|
317 |
+
llm = Groq(api_key=GROQ_API_KEY)
|
318 |
+
|
319 |
+
chat_completion = llm.chat.completions.create(
|
320 |
+
messages=[
|
321 |
+
{
|
322 |
+
"role": "user",
|
323 |
+
"content": final_report_prompt[:5000],
|
324 |
+
}
|
325 |
+
],
|
326 |
+
model="llama-3.3-70b-versatile",
|
327 |
+
)
|
328 |
+
response = chat_completion.choices[0].message.content
|
329 |
+
|
330 |
+
return response
|
331 |
+
|
332 |
+
|
333 |
+
def translate(report, model_provider):
|
334 |
+
translation_prompt = f"""
|
335 |
+
Translate the following corporate sentiment analysis report into Hindi:
|
336 |
+
|
337 |
+
{report}
|
338 |
+
|
339 |
+
Ensure the translation maintains professional tone and structure while accurately conveying key insights and details.
|
340 |
+
"""
|
341 |
+
if model_provider == "Ollama":
|
342 |
+
translation = chat(
|
343 |
+
messages=[
|
344 |
+
{
|
345 |
+
'role': 'user',
|
346 |
+
'content': translation_prompt
|
347 |
+
}
|
348 |
+
],
|
349 |
+
model='llama3.2:3b'
|
350 |
+
)
|
351 |
+
response = translation.message.content
|
352 |
+
|
353 |
+
else:
|
354 |
+
translation_llm = Groq(api_key=GROQ_API_KEY)
|
355 |
+
|
356 |
+
chat_completion = translation_llm.chat.completions.create(
|
357 |
+
messages=[
|
358 |
+
{
|
359 |
+
"role": "user",
|
360 |
+
"content": translation_prompt[:5000],
|
361 |
+
}
|
362 |
+
],
|
363 |
+
model="llama-3.3-70b-versatile",
|
364 |
+
)
|
365 |
+
response = chat_completion.choices[0].message.content
|
366 |
+
|
367 |
+
return response
|
368 |
+
|
369 |
+
|
370 |
+
def text_to_speech(text):
|
371 |
+
url = "https://api.elevenlabs.io/v1/text-to-speech/JBFqnCBsd6RMkjVDRZzb?output_format=mp3_44100_128"
|
372 |
+
|
373 |
+
model_id = "eleven_multilingual_v2"
|
374 |
+
output_file = "output.mp3"
|
375 |
+
api_key = "sk_a927222500aab9665f83f078b92e833e7ec1389ee68238c0"
|
376 |
+
|
377 |
+
headers = {
|
378 |
+
"xi-api-key": api_key,
|
379 |
+
"Content-Type": "application/json"
|
380 |
+
}
|
381 |
+
|
382 |
+
payload = {
|
383 |
+
"text": text,
|
384 |
+
"model_id": model_id
|
385 |
+
}
|
386 |
+
|
387 |
+
response = requests.post(url, headers=headers, json=payload)
|
388 |
+
|
389 |
+
if response.status_code == 200:
|
390 |
+
with open(output_file, "wb") as f:
|
391 |
+
f.write(response.content)
|
392 |
+
print(f"Audio saved to {output_file}")
|
393 |
+
else:
|
394 |
+
print(f"Error: {response.status_code} - {response.text}")
|
395 |
+
|
396 |
+
#
|