sidphbot's picture
spaces init
a8d4e3d
Metadata-Version: 2.1
Name: Auto-Research
Version: 1.0
Summary: Geberate scientific survey with just a query
Home-page: https://github.com/sidphbot/Auto-Research
Author: Sidharth Pal
Author-email: sidharth.pal1992@gmail.com
License: UNKNOWN
Project-URL: Docs, https://github.com/example/example/README.md
Project-URL: Bug Tracker, https://github.com/sidphbot/Auto-Research/issues
Project-URL: Demo, https://www.kaggle.com/sidharthpal/auto-research-generate-survey-from-query
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Console
Classifier: Environment :: Other Environment
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Education
Classifier: Intended Audience :: Science/Research
Classifier: Intended Audience :: Other Audience
Classifier: Topic :: Education
Classifier: Topic :: Education :: Computer Aided Instruction (CAI)
Classifier: Topic :: Scientific/Engineering
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
Classifier: Topic :: Scientific/Engineering :: Information Analysis
Classifier: Topic :: Scientific/Engineering :: Medical Science Apps.
Classifier: Topic :: Scientific/Engineering :: Physics
Classifier: Natural Language :: English
Classifier: License :: OSI Approved :: GNU General Public License (GPL)
Classifier: License :: OSI Approved :: GNU Library or Lesser General Public License (LGPL)
Classifier: License :: OSI Approved :: GNU Lesser General Public License v3 or later (LGPLv3+)
Classifier: License :: OSI Approved :: GNU General Public License v3 or later (GPLv3+)
Classifier: Operating System :: POSIX :: Linux
Classifier: Operating System :: MacOS :: MacOS X
Classifier: Environment :: GPU
Classifier: Environment :: GPU :: NVIDIA CUDA
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.6
Requires-Python: >=3.7
Description-Content-Type: text/markdown
Provides-Extra: spacy
License-File: LICENSE
# Auto-Research
![Auto-Research][logo]
[logo]: https://github.com/sidphbot/Auto-Research/blob/main/logo.png
A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting artifacts from a single research query.
Data Provider: [arXiv](https://arxiv.org/) Open Archive Initiative OAI
Requirements:
- python 3.7 or above
- poppler-utils - `sudo apt-get install build-essential libpoppler-cpp-dev pkg-config python-dev`
- list of requirements in requirements.txt - `cat requirements.txt | xargs pip install`
- 8GB disk space
- 13GB CUDA(GPU) memory - for a survey of 100 searched papers(max_search) and 25 selected papers(num_papers)
#### Demo :
Video Demo : https://drive.google.com/file/d/1-77J2L10lsW-bFDOGdTaPzSr_utY743g/view?usp=sharing
Kaggle Re-usable Demo : https://www.kaggle.com/sidharthpal/auto-research-generate-survey-from-query
(`[TIP]` click 'edit and run' to run the demo for your custom queries on a free GPU)
#### Steps to run (pip coming soon):
```
apt install -y poppler-utils libpoppler-cpp-dev
git clone https://github.com/sidphbot/Auto-Research.git
cd Auto-Research/
pip install -r requirements.txt
python survey.py [options] <your_research_query>
```
#### Artifacts generated (zipped):
- Detailed survey draft paper as txt file
- A curated list of top 25+ papers as pdfs and txts
- Images extracted from above papers as jpegs, bmps etc
- Heading/Section wise highlights extracted from above papers as a re-usable pure python joblib dump
- Tables extracted from papers(optional)
- Corpus of metadata highlights/text of top 100 papers as a re-usable pure python joblib dump
## Example run #1 - python utility
```
python survey.py 'multi-task representation learning'
```
## Example run #2 - python class
```
from survey import Surveyor
mysurveyor = Surveyor()
mysurveyor.survey('quantum entanglement')
```
### Research tools:
These are independent tools for your research or document text handling needs.
```
*[Tip]* :(models can be changed in defaults or passed on during init along with `refresh-models=True`)
```
- `abstractive_summary` - takes a long text document (`string`) and returns a 1-paragraph abstract or “abstractive” summary (`string`)
Input:
`longtext` : string
Returns:
`summary` : string
- `extractive_summary` - takes a long text document (`string`) and returns a 1-paragraph of extracted highlights or “extractive” summary (`string`)
Input:
`longtext` : string
Returns:
`summary` : string
- `generate_title` - takes a long text document (`string`) and returns a generated title (`string`)
Input:
`longtext` : string
Returns:
`title` : string
- `extractive_highlights` - takes a long text document (`string`) and returns a list of extracted highlights (`[string]`), a list of keywords (`[string]`) and key phrases (`[string]`)
Input:
`longtext` : string
Returns:
`highlights` : [string]
`keywords` : [string]
`keyphrases` : [string]
- `extract_images_from_file` - takes a pdf file name (`string`) and returns a list of image filenames (`[string]`).
Input:
`pdf_file` : string
Returns:
`images_files` : [string]
- `extract_tables_from_file` - takes a pdf file name (`string`) and returns a list of csv filenames (`[string]`).
Input:
`pdf_file` : string
Returns:
`images_files` : [string]
- `cluster_lines` - takes a list of lines (`string`) and returns the topic-clustered sections (`dict(generated_title: [cluster_abstract])`) and clustered lines (`dict(cluster_id: [cluster_lines])`)
Input:
`lines` : [string]
Returns:
`sections` : dict(generated_title: [cluster_abstract])
`clusters` : dict(cluster_id: [cluster_lines])
- `extract_headings` - *[for scientific texts - Assumes an ‘abstract’ heading present]* takes a text file name (`string`) and returns a list of headings (`[string]`) and refined lines (`[string]`).
`[Tip 1]` : Use `extract_sections` as a wrapper (e.g. `extract_sections(extract_headings(“/path/to/textfile”)`) to get heading-wise sectioned text with refined lines instead (`dict( heading: text)`)
`[Tip 2]` : write the word ‘abstract’ at the start of the file text to get an extraction for non-scientific texts as well !!
Input:
`text_file` : string
Returns:
`refined` : [string],
`headings` : [string]
`sectioned_doc` : dict( heading: text) (Optional - Wrapper case)
## Access/Modify defaults:
- inside code
```
from survey.Surveyor import DEFAULTS
from pprint import pprint
pprint(DEFAULTS)
```
or,
- Modify static config file - `defaults.py`
or,
- At runtime (utility)
```
python survey.py --help
```
```
usage: survey.py [-h] [--max_search max_metadata_papers]
[--num_papers max_num_papers] [--pdf_dir pdf_dir]
[--txt_dir txt_dir] [--img_dir img_dir] [--tab_dir tab_dir]
[--dump_dir dump_dir] [--models_dir save_models_dir]
[--title_model_name title_model_name]
[--ex_summ_model_name extractive_summ_model_name]
[--ledmodel_name ledmodel_name]
[--embedder_name sentence_embedder_name]
[--nlp_name spacy_model_name]
[--similarity_nlp_name similarity_nlp_name]
[--kw_model_name kw_model_name]
[--refresh_models refresh_models] [--high_gpu high_gpu]
query_string
Generate a survey just from a query !!
positional arguments:
query_string your research query/keywords
optional arguments:
-h, --help show this help message and exit
--max_search max_metadata_papers
maximium number of papers to gaze at - defaults to 100
--num_papers max_num_papers
maximium number of papers to download and analyse -
defaults to 25
--pdf_dir pdf_dir pdf paper storage directory - defaults to
arxiv_data/tarpdfs/
--txt_dir txt_dir text-converted paper storage directory - defaults to
arxiv_data/fulltext/
--img_dir img_dir image storage directory - defaults to
arxiv_data/images/
--tab_dir tab_dir tables storage directory - defaults to
arxiv_data/tables/
--dump_dir dump_dir all_output_dir - defaults to arxiv_dumps/
--models_dir save_models_dir
directory to save models (> 5GB) - defaults to
saved_models/
--title_model_name title_model_name
title model name/tag in hugging-face, defaults to
'Callidior/bert2bert-base-arxiv-titlegen'
--ex_summ_model_name extractive_summ_model_name
extractive summary model name/tag in hugging-face,
defaults to 'allenai/scibert_scivocab_uncased'
--ledmodel_name ledmodel_name
led model(for abstractive summary) name/tag in
hugging-face, defaults to 'allenai/led-
large-16384-arxiv'
--embedder_name sentence_embedder_name
sentence embedder name/tag in hugging-face, defaults
to 'paraphrase-MiniLM-L6-v2'
--nlp_name spacy_model_name
spacy model name/tag in hugging-face (if changed -
needs to be spacy-installed prior), defaults to
'en_core_sci_scibert'
--similarity_nlp_name similarity_nlp_name
spacy downstream model(for similarity) name/tag in
hugging-face (if changed - needs to be spacy-installed
prior), defaults to 'en_core_sci_lg'
--kw_model_name kw_model_name
keyword extraction model name/tag in hugging-face,
defaults to 'distilbert-base-nli-mean-tokens'
--refresh_models refresh_models
Refresh model downloads with given names (needs
atleast one model name param above), defaults to False
--high_gpu high_gpu High GPU usage permitted, defaults to False
```
- At runtime (code)
> during surveyor object initialization with `surveyor_obj = Surveyor()`
- `pdf_dir`: String, pdf paper storage directory - defaults to `arxiv_data/tarpdfs/`
- `txt_dir`: String, text-converted paper storage directory - defaults to `arxiv_data/fulltext/`
- `img_dir`: String, image image storage directory - defaults to `arxiv_data/images/`
- `tab_dir`: String, tables storage directory - defaults to `arxiv_data/tables/`
- `dump_dir`: String, all_output_dir - defaults to `arxiv_dumps/`
- `models_dir`: String, directory to save to huge models, defaults to `saved_models/`
- `title_model_name`: String, title model name/tag in hugging-face, defaults to `Callidior/bert2bert-base-arxiv-titlegen`
- `ex_summ_model_name`: String, extractive summary model name/tag in hugging-face, defaults to `allenai/scibert_scivocab_uncased`
- `ledmodel_name`: String, led model(for abstractive summary) name/tag in hugging-face, defaults to `allenai/led-large-16384-arxiv`
- `embedder_name`: String, sentence embedder name/tag in hugging-face, defaults to `paraphrase-MiniLM-L6-v2`
- `nlp_name`: String, spacy model name/tag in hugging-face (if changed - needs to be spacy-installed prior), defaults to `en_core_sci_scibert`
- `similarity_nlp_name`: String, spacy downstream trained model(for similarity) name/tag in hugging-face (if changed - needs to be spacy-installed prior), defaults to `en_core_sci_lg`
- `kw_model_name`: String, keyword extraction model name/tag in hugging-face, defaults to `distilbert-base-nli-mean-tokens`
- `high_gpu`: Bool, High GPU usage permitted, defaults to `False`
- `refresh_models`: Bool, Refresh model downloads with given names (needs atleast one model name param above), defaults to False
> during survey generation with `surveyor_obj.survey(query="my_research_query")`
- `max_search`: int maximium number of papers to gaze at - defaults to `100`
- `num_papers`: int maximium number of papers to download and analyse - defaults to `25`