Spaces:
Build error
Build error
Update README.md
Browse files
README.md
CHANGED
@@ -9,3 +9,276 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
----
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
----
|
12 |
+
|
13 |
+
|
14 |
+
# Auto-Research
|
15 |
+
![Auto-Research][logo]
|
16 |
+
|
17 |
+
[logo]: https://github.com/sidphbot/Auto-Research/blob/main/logo.png
|
18 |
+
A no-code utility to generate a detailed well-cited survey with topic clustered sections (draft paper format) and other interesting artifacts from a single research query.
|
19 |
+
|
20 |
+
Data Provider: [arXiv](https://arxiv.org/) Open Archive Initiative OAI
|
21 |
+
|
22 |
+
Requirements:
|
23 |
+
- python 3.7 or above
|
24 |
+
- poppler-utils - `sudo apt-get install build-essential libpoppler-cpp-dev pkg-config python-dev`
|
25 |
+
- list of requirements in requirements.txt - `cat requirements.txt | xargs pip install`
|
26 |
+
- 8GB disk space
|
27 |
+
- 13GB CUDA(GPU) memory - for a survey of 100 searched papers(max_search) and 25 selected papers(num_papers)
|
28 |
+
|
29 |
+
#### Demo :
|
30 |
+
|
31 |
+
Video Demo : https://drive.google.com/file/d/1-77J2L10lsW-bFDOGdTaPzSr_utY743g/view?usp=sharing
|
32 |
+
|
33 |
+
Kaggle Re-usable Demo : https://www.kaggle.com/sidharthpal/auto-research-generate-survey-from-query
|
34 |
+
|
35 |
+
(`[TIP]` click 'edit and run' to run the demo for your custom queries on a free GPU)
|
36 |
+
|
37 |
+
|
38 |
+
#### Installation:
|
39 |
+
```
|
40 |
+
sudo apt-get install build-essential poppler-utils libpoppler-cpp-dev pkg-config python-dev
|
41 |
+
pip install git+https://github.com/sidphbot/Auto-Research.git
|
42 |
+
```
|
43 |
+
|
44 |
+
#### Run Survey (cli):
|
45 |
+
```
|
46 |
+
python survey.py [options] <your_research_query>
|
47 |
+
```
|
48 |
+
|
49 |
+
#### Run Survey (Streamlit web-interface - new):
|
50 |
+
```
|
51 |
+
streamlit run app.py
|
52 |
+
```
|
53 |
+
|
54 |
+
#### Run Survey (Python API):
|
55 |
+
```
|
56 |
+
from survey import Surveyor
|
57 |
+
mysurveyor = Surveyor()
|
58 |
+
mysurveyor.survey('quantum entanglement')
|
59 |
+
```
|
60 |
+
|
61 |
+
### Research tools:
|
62 |
+
|
63 |
+
These are independent tools for your research or document text handling needs.
|
64 |
+
|
65 |
+
```
|
66 |
+
*[Tip]* :(models can be changed in defaults or passed on during init along with `refresh-models=True`)
|
67 |
+
```
|
68 |
+
|
69 |
+
- `abstractive_summary` - takes a long text document (`string`) and returns a 1-paragraph abstract or “abstractive” summary (`string`)
|
70 |
+
|
71 |
+
Input:
|
72 |
+
|
73 |
+
`longtext` : string
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
|
77 |
+
`summary` : string
|
78 |
+
|
79 |
+
- `extractive_summary` - takes a long text document (`string`) and returns a 1-paragraph of extracted highlights or “extractive” summary (`string`)
|
80 |
+
|
81 |
+
Input:
|
82 |
+
|
83 |
+
`longtext` : string
|
84 |
+
|
85 |
+
Returns:
|
86 |
+
|
87 |
+
`summary` : string
|
88 |
+
|
89 |
+
- `generate_title` - takes a long text document (`string`) and returns a generated title (`string`)
|
90 |
+
|
91 |
+
Input:
|
92 |
+
|
93 |
+
`longtext` : string
|
94 |
+
|
95 |
+
Returns:
|
96 |
+
|
97 |
+
`title` : string
|
98 |
+
|
99 |
+
- `extractive_highlights` - takes a long text document (`string`) and returns a list of extracted highlights (`[string]`), a list of keywords (`[string]`) and key phrases (`[string]`)
|
100 |
+
|
101 |
+
Input:
|
102 |
+
|
103 |
+
`longtext` : string
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
|
107 |
+
`highlights` : [string]
|
108 |
+
`keywords` : [string]
|
109 |
+
`keyphrases` : [string]
|
110 |
+
|
111 |
+
- `extract_images_from_file` - takes a pdf file name (`string`) and returns a list of image filenames (`[string]`).
|
112 |
+
|
113 |
+
Input:
|
114 |
+
|
115 |
+
`pdf_file` : string
|
116 |
+
|
117 |
+
Returns:
|
118 |
+
|
119 |
+
`images_files` : [string]
|
120 |
+
|
121 |
+
- `extract_tables_from_file` - takes a pdf file name (`string`) and returns a list of csv filenames (`[string]`).
|
122 |
+
|
123 |
+
Input:
|
124 |
+
|
125 |
+
`pdf_file` : string
|
126 |
+
|
127 |
+
Returns:
|
128 |
+
|
129 |
+
`images_files` : [string]
|
130 |
+
|
131 |
+
- `cluster_lines` - takes a list of lines (`string`) and returns the topic-clustered sections (`dict(generated_title: [cluster_abstract])`) and clustered lines (`dict(cluster_id: [cluster_lines])`)
|
132 |
+
|
133 |
+
Input:
|
134 |
+
|
135 |
+
`lines` : [string]
|
136 |
+
|
137 |
+
Returns:
|
138 |
+
|
139 |
+
`sections` : dict(generated_title: [cluster_abstract])
|
140 |
+
`clusters` : dict(cluster_id: [cluster_lines])
|
141 |
+
|
142 |
+
- `extract_headings` - *[for scientific texts - Assumes an ‘abstract’ heading present]* takes a text file name (`string`) and returns a list of headings (`[string]`) and refined lines (`[string]`).
|
143 |
+
|
144 |
+
`[Tip 1]` : Use `extract_sections` as a wrapper (e.g. `extract_sections(extract_headings(“/path/to/textfile”)`) to get heading-wise sectioned text with refined lines instead (`dict( heading: text)`)
|
145 |
+
|
146 |
+
`[Tip 2]` : write the word ‘abstract’ at the start of the file text to get an extraction for non-scientific texts as well !!
|
147 |
+
|
148 |
+
Input:
|
149 |
+
|
150 |
+
`text_file` : string
|
151 |
+
|
152 |
+
Returns:
|
153 |
+
|
154 |
+
`refined` : [string],
|
155 |
+
`headings` : [string]
|
156 |
+
`sectioned_doc` : dict( heading: text) (Optional - Wrapper case)
|
157 |
+
|
158 |
+
|
159 |
+
## Access/Modify defaults:
|
160 |
+
|
161 |
+
- inside code
|
162 |
+
```
|
163 |
+
from survey.Surveyor import DEFAULTS
|
164 |
+
from pprint import pprint
|
165 |
+
|
166 |
+
pprint(DEFAULTS)
|
167 |
+
```
|
168 |
+
or,
|
169 |
+
|
170 |
+
- Modify static config file - `defaults.py`
|
171 |
+
|
172 |
+
or,
|
173 |
+
|
174 |
+
- At runtime (utility)
|
175 |
+
|
176 |
+
```
|
177 |
+
python survey.py --help
|
178 |
+
```
|
179 |
+
```
|
180 |
+
usage: survey.py [-h] [--max_search max_metadata_papers]
|
181 |
+
[--num_papers max_num_papers] [--pdf_dir pdf_dir]
|
182 |
+
[--txt_dir txt_dir] [--img_dir img_dir] [--tab_dir tab_dir]
|
183 |
+
[--dump_dir dump_dir] [--models_dir save_models_dir]
|
184 |
+
[--title_model_name title_model_name]
|
185 |
+
[--ex_summ_model_name extractive_summ_model_name]
|
186 |
+
[--ledmodel_name ledmodel_name]
|
187 |
+
[--embedder_name sentence_embedder_name]
|
188 |
+
[--nlp_name spacy_model_name]
|
189 |
+
[--similarity_nlp_name similarity_nlp_name]
|
190 |
+
[--kw_model_name kw_model_name]
|
191 |
+
[--refresh_models refresh_models] [--high_gpu high_gpu]
|
192 |
+
query_string
|
193 |
+
|
194 |
+
Generate a survey just from a query !!
|
195 |
+
|
196 |
+
positional arguments:
|
197 |
+
query_string your research query/keywords
|
198 |
+
|
199 |
+
optional arguments:
|
200 |
+
-h, --help show this help message and exit
|
201 |
+
--max_search max_metadata_papers
|
202 |
+
maximium number of papers to gaze at - defaults to 100
|
203 |
+
--num_papers max_num_papers
|
204 |
+
maximium number of papers to download and analyse -
|
205 |
+
defaults to 25
|
206 |
+
--pdf_dir pdf_dir pdf paper storage directory - defaults to
|
207 |
+
arxiv_data/tarpdfs/
|
208 |
+
--txt_dir txt_dir text-converted paper storage directory - defaults to
|
209 |
+
arxiv_data/fulltext/
|
210 |
+
--img_dir img_dir image storage directory - defaults to
|
211 |
+
arxiv_data/images/
|
212 |
+
--tab_dir tab_dir tables storage directory - defaults to
|
213 |
+
arxiv_data/tables/
|
214 |
+
--dump_dir dump_dir all_output_dir - defaults to arxiv_dumps/
|
215 |
+
--models_dir save_models_dir
|
216 |
+
directory to save models (> 5GB) - defaults to
|
217 |
+
saved_models/
|
218 |
+
--title_model_name title_model_name
|
219 |
+
title model name/tag in hugging-face, defaults to
|
220 |
+
'Callidior/bert2bert-base-arxiv-titlegen'
|
221 |
+
--ex_summ_model_name extractive_summ_model_name
|
222 |
+
extractive summary model name/tag in hugging-face,
|
223 |
+
defaults to 'allenai/scibert_scivocab_uncased'
|
224 |
+
--ledmodel_name ledmodel_name
|
225 |
+
led model(for abstractive summary) name/tag in
|
226 |
+
hugging-face, defaults to 'allenai/led-
|
227 |
+
large-16384-arxiv'
|
228 |
+
--embedder_name sentence_embedder_name
|
229 |
+
sentence embedder name/tag in hugging-face, defaults
|
230 |
+
to 'paraphrase-MiniLM-L6-v2'
|
231 |
+
--nlp_name spacy_model_name
|
232 |
+
spacy model name/tag in hugging-face (if changed -
|
233 |
+
needs to be spacy-installed prior), defaults to
|
234 |
+
'en_core_sci_scibert'
|
235 |
+
--similarity_nlp_name similarity_nlp_name
|
236 |
+
spacy downstream model(for similarity) name/tag in
|
237 |
+
hugging-face (if changed - needs to be spacy-installed
|
238 |
+
prior), defaults to 'en_core_sci_lg'
|
239 |
+
--kw_model_name kw_model_name
|
240 |
+
keyword extraction model name/tag in hugging-face,
|
241 |
+
defaults to 'distilbert-base-nli-mean-tokens'
|
242 |
+
--refresh_models refresh_models
|
243 |
+
Refresh model downloads with given names (needs
|
244 |
+
atleast one model name param above), defaults to False
|
245 |
+
--high_gpu high_gpu High GPU usage permitted, defaults to False
|
246 |
+
|
247 |
+
```
|
248 |
+
|
249 |
+
- At runtime (code)
|
250 |
+
|
251 |
+
> during surveyor object initialization with `surveyor_obj = Surveyor()`
|
252 |
+
- `pdf_dir`: String, pdf paper storage directory - defaults to `arxiv_data/tarpdfs/`
|
253 |
+
- `txt_dir`: String, text-converted paper storage directory - defaults to `arxiv_data/fulltext/`
|
254 |
+
- `img_dir`: String, image image storage directory - defaults to `arxiv_data/images/`
|
255 |
+
- `tab_dir`: String, tables storage directory - defaults to `arxiv_data/tables/`
|
256 |
+
- `dump_dir`: String, all_output_dir - defaults to `arxiv_dumps/`
|
257 |
+
- `models_dir`: String, directory to save to huge models, defaults to `saved_models/`
|
258 |
+
- `title_model_name`: String, title model name/tag in hugging-face, defaults to `Callidior/bert2bert-base-arxiv-titlegen`
|
259 |
+
- `ex_summ_model_name`: String, extractive summary model name/tag in hugging-face, defaults to `allenai/scibert_scivocab_uncased`
|
260 |
+
- `ledmodel_name`: String, led model(for abstractive summary) name/tag in hugging-face, defaults to `allenai/led-large-16384-arxiv`
|
261 |
+
- `embedder_name`: String, sentence embedder name/tag in hugging-face, defaults to `paraphrase-MiniLM-L6-v2`
|
262 |
+
- `nlp_name`: String, spacy model name/tag in hugging-face (if changed - needs to be spacy-installed prior), defaults to `en_core_sci_scibert`
|
263 |
+
- `similarity_nlp_name`: String, spacy downstream trained model(for similarity) name/tag in hugging-face (if changed - needs to be spacy-installed prior), defaults to `en_core_sci_lg`
|
264 |
+
- `kw_model_name`: String, keyword extraction model name/tag in hugging-face, defaults to `distilbert-base-nli-mean-tokens`
|
265 |
+
- `high_gpu`: Bool, High GPU usage permitted, defaults to `False`
|
266 |
+
- `refresh_models`: Bool, Refresh model downloads with given names (needs atleast one model name param above), defaults to False
|
267 |
+
|
268 |
+
> during survey generation with `surveyor_obj.survey(query="my_research_query")`
|
269 |
+
- `max_search`: int maximium number of papers to gaze at - defaults to `100`
|
270 |
+
- `num_papers`: int maximium number of papers to download and analyse - defaults to `25`
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
#### Artifacts generated (zipped):
|
275 |
+
- Detailed survey draft paper as txt file
|
276 |
+
- A curated list of top 25+ papers as pdfs and txts
|
277 |
+
- Images extracted from above papers as jpegs, bmps etc
|
278 |
+
- Heading/Section wise highlights extracted from above papers as a re-usable pure python joblib dump
|
279 |
+
- Tables extracted from papers(optional)
|
280 |
+
- Corpus of metadata highlights/text of top 100 papers as a re-usable pure python joblib dump
|
281 |
+
|
282 |
+
|
283 |
+
Please cite this repo if it helped you :)
|
284 |
+
|