Spaces:
Runtime error
Runtime error
import streamlit as st | |
import pandas as pd | |
import pickle | |
# import preproses | |
preproses = pickle.load(open("preproses.pkl", "rb")) | |
# import model | |
model = pickle.load(open("model.pkl", "rb")) | |
#title | |
st.title("Online Payments Fraud Detection") | |
st.write("Created by Sihar Pangaribuan") | |
# User imput | |
step = st.number_input(label='Unit of time (hour)', min_value=1, max_value=143, value=1, step=1) | |
type = st.selectbox(label='Select type of online transaction', options=['PAYMENT', 'TRANSFER', 'CASH_OUT', 'DEBIT', 'CASH_IN']) | |
amount = st.number_input(label='Input amount of the transaction', min_value=0.0, max_value=10000000.0, value=0.0, step=0.1) | |
nameOrig = st.text_input('Input customer origin Id', value='') | |
oldbalanceOrg = st.number_input(label='Balance before the transaction', min_value=0.0, max_value=38939424.03, value=0.0, step=0.1) | |
newbalanceOrig = st.number_input(label='Balance after the transaction', min_value=0.0, max_value=38946233.02, value=0.0, step=0.1) | |
nameDest = st.text_input('Input customer destination Id', value='') | |
oldbalanceDest = st.number_input(label='Input initial balance of recipient before the transaction', min_value=0.0, max_value=42207404.59, value=0.0, step=0.1) | |
newbalanceDest = st.number_input(label='Input the new balance of recipient after the transaction', min_value=0.0, max_value=42207404.59, value=0.0, step=0.1) | |
# Convert ke data frame | |
data = pd.DataFrame({'step': [step], | |
'type': [type], | |
'amount': [amount], | |
'nameOrig': [nameOrig], | |
'oldbalanceOrg': [oldbalanceOrg], | |
'newbalanceOrig': [newbalanceOrig], | |
'nameDest': [nameDest], | |
'oldbalanceDest': [oldbalanceDest], | |
'newbalanceDest': [newbalanceDest] | |
}) | |
data = preproses.transform(data) | |
# model predict | |
if st.button('Predict'): | |
prediction = model.predict(data).tolist()[0] | |
if prediction == 1: | |
prediction = 'Froud' | |
else: | |
prediction = 'Not Froud' | |
st.write('The Prediction is: ') | |
st.write(prediction) |