Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,19 @@
|
|
1 |
-
import
|
2 |
-
from transformers import Wav2Vec2Processor, Wav2Vec2BertForCTC
|
3 |
import torch
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
# Split into manageable chunks (30 seconds each)
|
23 |
-
chunk_size = int(30 * rate) # 30 seconds in samples
|
24 |
-
transcription = []
|
25 |
-
|
26 |
-
for i in range(0, len(audio), chunk_size):
|
27 |
-
chunk = audio[i:i + chunk_size]
|
28 |
-
input_values = processor(chunk, sampling_rate=16000, return_tensors="pt").input_values
|
29 |
-
|
30 |
-
# Perform inference
|
31 |
-
with torch.no_grad():
|
32 |
-
logits = model(input_values).logits
|
33 |
-
|
34 |
-
# Decode predicted IDs to text
|
35 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
36 |
-
transcription.append(processor.batch_decode(predicted_ids)[0])
|
37 |
-
|
38 |
-
return " ".join(transcription)
|
39 |
-
except Exception as e:
|
40 |
-
return f"Error: {str(e)}"
|
41 |
-
|
42 |
-
# Gradio interface setup
|
43 |
-
iface = gr.Interface(
|
44 |
-
fn=transcribe_audio,
|
45 |
-
inputs=gr.Audio(type="filepath"),
|
46 |
-
outputs=gr.Textbox(label="Punjabi Transcription"),
|
47 |
-
title="Punjabi Audio Transcription",
|
48 |
-
description="Upload an audio file to transcribe Punjabi speech."
|
49 |
-
)
|
50 |
-
|
51 |
-
iface.launch()
|
|
|
1 |
+
import soundfile as sf
|
|
|
2 |
import torch
|
3 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
4 |
+
import argparse
|
5 |
+
def parse_transcription(wav_file):
|
6 |
+
# load pretrained model
|
7 |
+
processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-punjabi-stt")
|
8 |
+
model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-punjabi-stt")
|
9 |
+
# load audio
|
10 |
+
audio_input, sample_rate = sf.read(wav_file)
|
11 |
+
# pad input values and return pt tensor
|
12 |
+
input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values
|
13 |
+
# INFERENCE
|
14 |
+
# retrieve logits & take argmax
|
15 |
+
logits = model(input_values).logits
|
16 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
17 |
+
# transcribe
|
18 |
+
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
|
19 |
+
print(transcription)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|