simen
commited on
Commit
·
a0e4229
1
Parent(s):
353cc28
rewrite progress
Browse files- app.py +496 -337
- preprocess_forecast.py +173 -0
- pyproject.toml +29 -0
- utils.py +19 -0
- uv.lock +0 -0
app.py
CHANGED
@@ -7,159 +7,73 @@ import pandas as pd
|
|
7 |
import matplotlib.colors as mcolors
|
8 |
import streamlit as st
|
9 |
import datetime
|
10 |
-
import matplotlib.dates as mdates
|
11 |
from scipy.interpolate import griddata
|
12 |
-
import folium
|
13 |
import branca.colormap as cm
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
-
@st.cache_data(ttl=
|
17 |
-
def
|
18 |
-
# The MEPS dataset: https://github.com/metno/NWPdocs/wiki/MEPS-dataset
|
19 |
-
today = datetime.datetime.today()
|
20 |
-
catalog_url = f"https://thredds.met.no/thredds/catalog/meps25epsarchive/{today.year}/{today.month:02d}/{today.day:02d}/catalog.xml"
|
21 |
-
file_url_base = f"https://thredds.met.no/thredds/dodsC/meps25epsarchive/{today.year}/{today.month:02d}/{today.day:02d}"
|
22 |
-
# Get the datasets from the catalog
|
23 |
-
catalog = TDSCatalog(catalog_url)
|
24 |
-
datasets = [s for s in catalog.datasets if "meps_det_ml" in s]
|
25 |
-
file_path = f"{file_url_base}/{sorted(datasets)[-1]}"
|
26 |
-
return file_path
|
27 |
-
|
28 |
-
|
29 |
-
@st.cache_data()
|
30 |
-
def load_meps_for_location(file_path=None, altitude_min=0, altitude_max=3000):
|
31 |
"""
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
x_range = "[220:1:300]"
|
41 |
-
y_range = "[420:1:500]"
|
42 |
-
time_range = "[0:1:66]"
|
43 |
-
hybrid_range = "[25:1:64]"
|
44 |
-
height_range = "[0:1:0]"
|
45 |
-
|
46 |
-
params = {
|
47 |
-
"x": x_range,
|
48 |
-
"y": y_range,
|
49 |
-
"time": time_range,
|
50 |
-
"hybrid": hybrid_range,
|
51 |
-
"height": height_range,
|
52 |
-
"longitude": f"{y_range}{x_range}",
|
53 |
-
"latitude": f"{y_range}{x_range}",
|
54 |
-
"air_temperature_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
|
55 |
-
"ap": f"{hybrid_range}",
|
56 |
-
"b": f"{hybrid_range}",
|
57 |
-
"surface_air_pressure": f"{time_range}{height_range}{y_range}{x_range}",
|
58 |
-
"x_wind_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
|
59 |
-
"y_wind_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
|
60 |
-
}
|
61 |
-
|
62 |
-
path = f"{file_path}?{','.join(f'{k}{v}' for k, v in params.items())}"
|
63 |
-
|
64 |
-
subset = xr.open_dataset(path, cache=True)
|
65 |
-
subset.load()
|
66 |
-
|
67 |
-
# %% get geopotential
|
68 |
-
time_range_sfc = "[0:1:0]"
|
69 |
-
surf_params = {
|
70 |
-
"x": x_range,
|
71 |
-
"y": y_range,
|
72 |
-
"time": f"{time_range}",
|
73 |
-
"surface_geopotential": f"{time_range_sfc}[0:1:0]{y_range}{x_range}",
|
74 |
-
"air_temperature_0m": f"{time_range}[0:1:0]{y_range}{x_range}",
|
75 |
-
}
|
76 |
-
file_path_surf = f"{file_path.replace('meps_det_ml', 'meps_det_sfc')}?{','.join(f'{k}{v}' for k, v in surf_params.items())}"
|
77 |
-
|
78 |
-
# Load surface parameters and merge into the main dataset
|
79 |
-
surf = xr.open_dataset(file_path_surf, cache=True)
|
80 |
-
# Convert the surface geopotential to elevation
|
81 |
-
elevation = (surf.surface_geopotential / 9.80665).squeeze()
|
82 |
-
# elevation.plot()
|
83 |
-
subset["elevation"] = elevation
|
84 |
-
air_temperature_0m = surf.air_temperature_0m.squeeze()
|
85 |
-
subset["air_temperature_0m"] = air_temperature_0m
|
86 |
-
|
87 |
-
# subset.elevation.plot()
|
88 |
-
# %%
|
89 |
-
def hybrid_to_height(ds):
|
90 |
-
"""
|
91 |
-
ds = subset
|
92 |
-
"""
|
93 |
-
# Constants
|
94 |
-
R = 287.05 # Gas constant for dry air
|
95 |
-
g = 9.80665 # Gravitational acceleration
|
96 |
-
|
97 |
-
# Calculate the pressure at each level
|
98 |
-
p = ds["ap"] + ds["b"] * ds["surface_air_pressure"] # .mean("ensemble_member")
|
99 |
-
|
100 |
-
# Get the temperature at each level
|
101 |
-
T = ds["air_temperature_ml"] # .mean("ensemble_member")
|
102 |
-
|
103 |
-
# Calculate the height difference between each level and the surface
|
104 |
-
dp = ds["surface_air_pressure"] - p # Pressure difference
|
105 |
-
dT = T - T.isel(hybrid=-1) # Temperature difference relative to the surface
|
106 |
-
dT_mean = 0.5 * (T + T.isel(hybrid=-1)) # Mean temperature
|
107 |
-
|
108 |
-
# Calculate the height using the hypsometric equation
|
109 |
-
dz = (R * dT_mean / g) * np.log(ds["surface_air_pressure"] / p)
|
110 |
-
|
111 |
-
return dz
|
112 |
-
|
113 |
-
altitude = hybrid_to_height(subset).mean("time").squeeze().mean("x").mean("y")
|
114 |
-
subset = subset.assign_coords(altitude=("hybrid", altitude.data))
|
115 |
-
subset = subset.swap_dims({"hybrid": "altitude"})
|
116 |
-
|
117 |
-
# filter subset on altitude ranges
|
118 |
-
subset = subset.where(
|
119 |
-
(subset.altitude >= altitude_min) & (subset.altitude <= altitude_max), drop=True
|
120 |
-
).squeeze()
|
121 |
-
|
122 |
-
wind_speed = np.sqrt(subset["x_wind_ml"] ** 2 + subset["y_wind_ml"] ** 2)
|
123 |
-
subset = subset.assign(wind_speed=(("time", "altitude", "y", "x"), wind_speed.data))
|
124 |
-
|
125 |
-
subset["thermal_temp_diff"] = compute_thermal_temp_difference(subset)
|
126 |
-
# subset = subset.assign(thermal_temp_diff=(('time', 'altitude','y','x'), thermal_temp_diff.data))
|
127 |
-
|
128 |
-
# Find the indices where the thermal temperature difference is zero or negative
|
129 |
-
# Create tiny value at ground level to avoid finding the ground as the thermal top
|
130 |
-
thermal_temp_diff = subset["thermal_temp_diff"]
|
131 |
-
thermal_temp_diff = thermal_temp_diff.where(
|
132 |
-
(thermal_temp_diff.sum("altitude") > 0)
|
133 |
-
| (subset["altitude"] != subset.altitude.min()),
|
134 |
-
thermal_temp_diff + 1e-6,
|
135 |
-
)
|
136 |
-
indices = (thermal_temp_diff > 0).argmax(dim="altitude")
|
137 |
-
# Get the altitudes corresponding to these indices
|
138 |
-
thermal_top = subset.altitude[indices]
|
139 |
-
subset = subset.assign(thermal_top=(("time", "y", "x"), thermal_top.data))
|
140 |
-
subset = subset.set_coords(["latitude", "longitude"])
|
141 |
-
|
142 |
-
return subset
|
143 |
-
|
144 |
|
145 |
-
#
|
146 |
-
|
147 |
-
lapse_rate = 0.0098
|
148 |
-
ground_temp = subset.air_temperature_0m - 273.3
|
149 |
-
air_temp = subset["air_temperature_ml"] - 273.3 # .ffill(dim='altitude')
|
150 |
|
151 |
-
#
|
152 |
-
|
153 |
-
|
154 |
-
# 'altitude' altitude: 4
|
155 |
-
|
156 |
-
# broadcast ground temperature to all altitudes, but let it decrease by lapse rate
|
157 |
-
altitude_diff = subset.altitude - subset.elevation
|
158 |
-
altitude_diff = altitude_diff.where(altitude_diff >= 0, 0)
|
159 |
-
temp_decrease = lapse_rate * altitude_diff
|
160 |
-
ground_parcel_temp = ground_temp - temp_decrease
|
161 |
-
thermal_temp_diff = (ground_parcel_temp - air_temp).clip(min=0)
|
162 |
-
return thermal_temp_diff
|
163 |
|
164 |
|
165 |
def wind_and_temp_colorscales(wind_max=20, tempdiff_max=8):
|
@@ -185,17 +99,19 @@ def wind_and_temp_colorscales(wind_max=20, tempdiff_max=8):
|
|
185 |
return windcolors, tempcolors
|
186 |
|
187 |
|
188 |
-
import plotly.graph_objects as go
|
189 |
-
import numpy as np
|
190 |
-
import pandas as pd
|
191 |
-
import datetime
|
192 |
-
|
193 |
-
|
194 |
@st.cache_data(ttl=60)
|
195 |
def create_wind_map(
|
196 |
-
|
197 |
):
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
wind_min, wind_max = 0.3, 20
|
201 |
tempdiff_min, tempdiff_max = 0, 8
|
@@ -212,11 +128,9 @@ def create_wind_map(
|
|
212 |
|
213 |
# Resample time and altitude for the wind plot data.
|
214 |
new_timestamps = pd.date_range(date_start, date_end, 20)
|
215 |
-
new_altitude = np.arange(
|
216 |
-
subset_data.elevation.mean(), altitude_max, altitude_max / 20
|
217 |
-
)
|
218 |
|
219 |
-
windplot_data =
|
220 |
windplot_data = windplot_data.interp(altitude=new_altitude, time=new_timestamps)
|
221 |
|
222 |
# Convert data for Plotly heatmap
|
@@ -250,7 +164,7 @@ def create_wind_map(
|
|
250 |
colorscale=wind_colors,
|
251 |
colorbar=dict(title="Wind Speed (m/s)"),
|
252 |
),
|
253 |
-
text=[f"Speed: {s:.2f} m/s" for s in speed.
|
254 |
hoverinfo="text",
|
255 |
)
|
256 |
)
|
@@ -337,207 +251,470 @@ def create_sounding(_subset, date, hour, x_target, y_target, altitude_max=3000):
|
|
337 |
return fig
|
338 |
|
339 |
|
340 |
-
|
341 |
-
def
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
subset = _subset
|
349 |
|
350 |
-
# Get the latitude and longitude values from the dataset
|
351 |
latitude_values = subset.latitude.values.flatten()
|
352 |
longitude_values = subset.longitude.values.flatten()
|
353 |
-
thermal_top_values =
|
354 |
-
|
355 |
-
# Convert the irregular grid data into a regular grid
|
356 |
-
step_lon, step_lat = (
|
357 |
-
subset.longitude.diff("x").quantile(0.1).values,
|
358 |
-
subset.latitude.diff("y").quantile(0.1).values,
|
359 |
)
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
)
|
370 |
-
|
371 |
-
#
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
)
|
379 |
|
380 |
-
|
381 |
-
|
382 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
383 |
]
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
origin="lower",
|
391 |
-
pixelated=False,
|
392 |
)
|
393 |
|
394 |
-
|
|
|
395 |
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
crs = pyproj.CRS.from_cf(
|
403 |
-
{
|
404 |
-
"grid_mapping_name": "lambert_conformal_conic",
|
405 |
-
"standard_parallel": [63.3, 63.3],
|
406 |
-
"longitude_of_central_meridian": 15.0,
|
407 |
-
"latitude_of_projection_origin": 63.3,
|
408 |
-
"earth_radius": 6371000.0,
|
409 |
-
}
|
410 |
)
|
411 |
-
# Transformer to project from ESPG:4368 (WGS:84) to our lambert_conformal_conic
|
412 |
-
proj = pyproj.Proj.from_crs(4326, crs, always_xy=True)
|
413 |
|
414 |
-
#
|
415 |
-
|
416 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
417 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
now = datetime.datetime.now().replace(minute=0, second=0, microsecond=0)
|
432 |
-
|
433 |
-
if "forecast_date" not in st.session_state:
|
434 |
-
st.session_state.forecast_date = (now + datetime.timedelta(days=1)).date()
|
435 |
-
if "forecast_time" not in st.session_state:
|
436 |
-
st.session_state.forecast_time = datetime.time(14, 0)
|
437 |
-
if "forecast_length" not in st.session_state:
|
438 |
-
st.session_state.forecast_length = 1
|
439 |
-
if "altitude_max" not in st.session_state:
|
440 |
-
st.session_state.altitude_max = 3000
|
441 |
-
if "target_latitude" not in st.session_state:
|
442 |
-
st.session_state.target_latitude = 61.22908
|
443 |
-
if "target_longitude" not in st.session_state:
|
444 |
-
st.session_state.target_longitude = 7.09674
|
445 |
-
col1, col_date, col_time, col3 = st.columns([0.2, 0.6, 0.2, 0.2])
|
446 |
-
|
447 |
-
with col1:
|
448 |
-
if st.button("⏮️", use_container_width=True):
|
449 |
-
st.session_state.forecast_date -= datetime.timedelta(days=1)
|
450 |
-
with col3:
|
451 |
-
if st.button(
|
452 |
-
"⏭️",
|
453 |
-
use_container_width=True,
|
454 |
-
disabled=(st.session_state.forecast_date == start_stop_time[1]),
|
455 |
-
):
|
456 |
-
st.session_state.forecast_date += datetime.timedelta(days=1)
|
457 |
-
with col_date:
|
458 |
-
st.session_state.forecast_date = st.date_input(
|
459 |
-
"Start date",
|
460 |
-
value=st.session_state.forecast_date,
|
461 |
-
min_value=start_stop_time[0],
|
462 |
-
max_value=start_stop_time[1],
|
463 |
-
label_visibility="collapsed",
|
464 |
-
disabled=True,
|
465 |
-
)
|
466 |
-
with col_time:
|
467 |
-
st.session_state.forecast_time = st.time_input(
|
468 |
-
"Start time",
|
469 |
-
value=st.session_state.forecast_time,
|
470 |
-
step=3600,
|
471 |
-
disabled=False,
|
472 |
-
label_visibility="collapsed",
|
473 |
-
)
|
474 |
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
480 |
)
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
|
|
|
|
|
|
|
|
487 |
)
|
488 |
|
489 |
-
|
490 |
-
with st.expander("Map", expanded=True):
|
491 |
-
from streamlit_folium import st_folium
|
492 |
|
493 |
-
st.cache_data(ttl=30)
|
494 |
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
500 |
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
505 |
|
506 |
-
|
507 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
508 |
)
|
509 |
-
|
510 |
|
511 |
-
|
512 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
513 |
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
|
519 |
x_target, y_target = latlon_to_xy(
|
520 |
st.session_state.target_latitude, st.session_state.target_longitude
|
521 |
)
|
522 |
-
wind_fig =
|
523 |
subset,
|
524 |
-
date_start=date_start,
|
525 |
-
date_end=date_end,
|
526 |
-
altitude_max=st.session_state.altitude_max,
|
527 |
x_target=x_target,
|
528 |
y_target=y_target,
|
|
|
529 |
)
|
530 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
531 |
plt.close()
|
532 |
|
533 |
with st.expander("More settings", expanded=False):
|
534 |
-
st.session_state.forecast_length = st.number_input(
|
535 |
-
"multiday",
|
536 |
-
1,
|
537 |
-
3,
|
538 |
-
1,
|
539 |
-
step=1,
|
540 |
-
)
|
541 |
st.session_state.altitude_max = st.number_input(
|
542 |
"Max altitude", 0, 4000, 3000, step=500
|
543 |
)
|
@@ -567,21 +744,6 @@ def show_forecast():
|
|
567 |
"Wind and sounding data from MEPS model (main model used by met.no), including the estimated ground temperature. Ive probably made many errors in this process."
|
568 |
)
|
569 |
|
570 |
-
# Download new forecast if available
|
571 |
-
st.session_state.file_path = find_latest_meps_file()
|
572 |
-
subset = load_data(st.session_state.file_path)
|
573 |
-
|
574 |
-
|
575 |
-
@st.cache_data
|
576 |
-
def load_data(filepath):
|
577 |
-
local = False
|
578 |
-
if local:
|
579 |
-
subset = xr.open_dataset("subset.nc")
|
580 |
-
else:
|
581 |
-
subset = load_meps_for_location(filepath)
|
582 |
-
subset.to_netcdf("subset.nc")
|
583 |
-
return subset
|
584 |
-
|
585 |
|
586 |
if __name__ == "__main__":
|
587 |
run_streamlit = True
|
@@ -593,9 +755,6 @@ if __name__ == "__main__":
|
|
593 |
lon = 7.09674
|
594 |
x_target, y_target = latlon_to_xy(lat, lon)
|
595 |
|
596 |
-
dataset_file_path = find_latest_meps_file()
|
597 |
-
subset = load_data(dataset_file_path)
|
598 |
-
|
599 |
build_map_overlays(subset, date="2024-05-14", hour="16")
|
600 |
|
601 |
wind_fig = create_wind_map(
|
|
|
7 |
import matplotlib.colors as mcolors
|
8 |
import streamlit as st
|
9 |
import datetime
|
|
|
10 |
from scipy.interpolate import griddata
|
|
|
11 |
import branca.colormap as cm
|
12 |
+
import os
|
13 |
+
from utils import latlon_to_xy
|
14 |
+
import plotly.graph_objects as go
|
15 |
+
from matplotlib.colors import to_hex, LinearSegmentedColormap
|
16 |
+
from streamlit_plotly_events import plotly_events
|
17 |
|
18 |
|
19 |
+
@st.cache_data(ttl=7200)
|
20 |
+
def load_data():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
"""
|
22 |
+
Loads a NetCDF file containing forecast data. Example
|
23 |
+
<xarray.Dataset> Size: 483MB
|
24 |
+
Dimensions: (altitude: 34, time: 67, y: 81, x: 81)
|
25 |
+
Coordinates:
|
26 |
+
height float32 4B 0.0
|
27 |
+
hybrid (altitude) float64 272B 0.6784 0.6984 ... 0.9985
|
28 |
+
* x (x) float32 324B -5.101e+05 -5.076e+05 ... -3.101e+05
|
29 |
+
* y (y) float32 324B -2.825e+05 -2.8e+05 ... -8.252e+04
|
30 |
+
* time (time) datetime64[ns] 536B 2025-03-13T12:00:00 ... ...
|
31 |
+
longitude (y, x) float64 52kB 5.684 5.729 5.774 ... 8.919 8.967
|
32 |
+
latitude (y, x) float64 52kB 60.43 60.43 60.43 ... 62.42 62.43
|
33 |
+
* altitude (altitude) float64 272B 2.89e+03 2.684e+03 ... 11.66
|
34 |
+
Data variables:
|
35 |
+
ap (altitude) float64 272B 5.682e+03 5.01e+03 ... 0.0 0.0
|
36 |
+
b (altitude) float64 272B 0.6223 0.6489 ... 0.9985
|
37 |
+
air_temperature_ml (time, altitude, y, x) float32 60MB 252.5 ... 260.7
|
38 |
+
x_wind_ml (time, altitude, y, x) float32 60MB -1.6 ... 5.709
|
39 |
+
y_wind_ml (time, altitude, y, x) float32 60MB -11.19 ... -10.67
|
40 |
+
surface_air_pressure (time, y, x, altitude) float32 60MB 9.46e+04 ... 8....
|
41 |
+
elevation (y, x, altitude) float32 892kB 465.8 ... 1.543e+03
|
42 |
+
air_temperature_0m (time, y, x, altitude) float32 60MB 278.6 ... 261.1
|
43 |
+
wind_speed (time, altitude, y, x) float32 60MB 11.31 ... 12.1
|
44 |
+
thermal_temp_diff (time, y, x, altitude) float64 120MB 2.331 ... 0.3471
|
45 |
+
thermal_top (time, y, x) float64 4MB 2.89e+03 ... 2.89e+03
|
46 |
+
Attributes: (12/41)
|
47 |
+
min_time: 2025-03-13T12:00:00Z
|
48 |
+
geospatial_lat_min: 49.8
|
49 |
+
geospatial_lat_max: 75.2
|
50 |
+
geospatial_lon_min: -18.1
|
51 |
+
geospatial_lon_max: 54.2
|
52 |
+
comment: For more information, please visit https://g...
|
53 |
+
... ...
|
54 |
+
publisher_name: Norwegian Meteorological Institute
|
55 |
+
summary: This file contains model level parameters fr...
|
56 |
+
summary_no: Denne filen inneholder modelnivåparametere f...
|
57 |
+
title: Meps 2.5Km deterministic model level paramet...
|
58 |
+
title_no: Meps 2.5Km deterministisk modellnivåparamete...
|
59 |
+
related_dataset: no.met:8c94c7de-6328-4113-9e77-8f090999fab9 ...
|
60 |
"""
|
61 |
+
# Find all files in the forecasts directory
|
62 |
+
forecast_dir = "forecasts"
|
63 |
+
# Get a list of all NetCDF files
|
64 |
+
nc_files = [f for f in os.listdir(forecast_dir) if f.endswith(".nc")]
|
65 |
+
if not nc_files:
|
66 |
+
raise FileNotFoundError("No forecast files found in the 'forecasts' directory")
|
67 |
|
68 |
+
# Sort files by their timestamp, assuming the filenames contain the timestamp
|
69 |
+
nc_files.sort()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
# Choose the latest file
|
72 |
+
latest_file = os.path.join(forecast_dir, nc_files[-1])
|
|
|
|
|
|
|
73 |
|
74 |
+
# Load the dataset from the latest file
|
75 |
+
subset = xr.open_dataset(latest_file)
|
76 |
+
return subset
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
def wind_and_temp_colorscales(wind_max=20, tempdiff_max=8):
|
|
|
99 |
return windcolors, tempcolors
|
100 |
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
@st.cache_data(ttl=60)
|
103 |
def create_wind_map(
|
104 |
+
_subset, x_target, y_target, altitude_max=4000, date_start=None, date_end=None
|
105 |
):
|
106 |
+
"""
|
107 |
+
_subset = subset
|
108 |
+
altitude_max = 3000
|
109 |
+
x_target = -422175.14005226345
|
110 |
+
y_target = -204279.84596708667
|
111 |
+
|
112 |
+
|
113 |
+
"""
|
114 |
+
subset = _subset
|
115 |
|
116 |
wind_min, wind_max = 0.3, 20
|
117 |
tempdiff_min, tempdiff_max = 0, 8
|
|
|
128 |
|
129 |
# Resample time and altitude for the wind plot data.
|
130 |
new_timestamps = pd.date_range(date_start, date_end, 20)
|
131 |
+
new_altitude = np.arange(subset.elevation.mean(), altitude_max, altitude_max / 20)
|
|
|
|
|
132 |
|
133 |
+
windplot_data = subset.sel(x=x_target, y=y_target, method="nearest")
|
134 |
windplot_data = windplot_data.interp(altitude=new_altitude, time=new_timestamps)
|
135 |
|
136 |
# Convert data for Plotly heatmap
|
|
|
164 |
colorscale=wind_colors,
|
165 |
colorbar=dict(title="Wind Speed (m/s)"),
|
166 |
),
|
167 |
+
# text=[f"Speed: {s:.2f} m/s" for s in speed.squeeze()],
|
168 |
hoverinfo="text",
|
169 |
)
|
170 |
)
|
|
|
251 |
return fig
|
252 |
|
253 |
|
254 |
+
# %%
|
255 |
+
def date_controls(subset):
|
256 |
+
start_stop_time = [
|
257 |
+
subset.time.min().values.astype("M8[D]").astype("O"),
|
258 |
+
subset.time.max().values.astype("M8[D]").astype("O"),
|
259 |
+
]
|
260 |
+
now = datetime.datetime.now().replace(minute=0, second=0, microsecond=0).date()
|
261 |
+
|
262 |
+
if "forecast_date" not in st.session_state:
|
263 |
+
st.session_state.forecast_date = now
|
264 |
+
if "forecast_time" not in st.session_state:
|
265 |
+
st.session_state.forecast_time = datetime.time(14, 0)
|
266 |
+
if "altitude_max" not in st.session_state:
|
267 |
+
st.session_state.altitude_max = 3000
|
268 |
+
if "target_latitude" not in st.session_state:
|
269 |
+
st.session_state.target_latitude = 61.22908
|
270 |
+
if "target_longitude" not in st.session_state:
|
271 |
+
st.session_state.target_longitude = 7.09674
|
272 |
+
|
273 |
+
# Generate available days within the dataset's time range
|
274 |
+
available_days = pd.date_range(
|
275 |
+
start=start_stop_time[0], end=start_stop_time[1]
|
276 |
+
).date
|
277 |
+
|
278 |
+
day_cols = st.columns(len(available_days)) # Create columns for each available day
|
279 |
+
|
280 |
+
for i, day in enumerate(available_days):
|
281 |
+
label = day.strftime("%A") # Get day label
|
282 |
+
if day == now:
|
283 |
+
label += " (today)"
|
284 |
+
with day_cols[i]: # Place each button in its respective column
|
285 |
+
if st.button(label):
|
286 |
+
st.session_state.forecast_date = day
|
287 |
+
|
288 |
+
# Group hours into smaller rows for better layout
|
289 |
+
hours_per_row = 24 # Define how many hour buttons to display per row
|
290 |
+
available_hours = range(7, 22, 1) # 24-hour format
|
291 |
+
|
292 |
+
# Divide hours into batches
|
293 |
+
hour_batches = [
|
294 |
+
available_hours[i : i + hours_per_row]
|
295 |
+
for i in range(0, len(available_hours), hours_per_row)
|
296 |
+
]
|
297 |
+
|
298 |
+
# Display hour buttons in rows
|
299 |
+
for batch in hour_batches:
|
300 |
+
hour_cols = st.columns(len(batch))
|
301 |
+
for i, hour in enumerate(batch):
|
302 |
+
label = f"{hour:02}:00"
|
303 |
+
with hour_cols[i]:
|
304 |
+
if st.button(label):
|
305 |
+
st.session_state.forecast_time = datetime.time(hour, 0)
|
306 |
+
|
307 |
+
|
308 |
+
def build_map(_subset, date=None, hour=None):
|
309 |
subset = _subset
|
310 |
|
|
|
311 |
latitude_values = subset.latitude.values.flatten()
|
312 |
longitude_values = subset.longitude.values.flatten()
|
313 |
+
thermal_top_values = (
|
314 |
+
subset.thermal_top.sel(time=f"{date}T{hour}").values.flatten().round()
|
|
|
|
|
|
|
|
|
315 |
)
|
316 |
+
|
317 |
+
# Use Plotly's scattermap for visualization and enable click events
|
318 |
+
scatter_map = go.Scattermap(
|
319 |
+
lat=latitude_values,
|
320 |
+
lon=longitude_values,
|
321 |
+
mode="markers",
|
322 |
+
marker=go.scattermap.Marker(
|
323 |
+
size=9,
|
324 |
+
color=thermal_top_values,
|
325 |
+
colorscale="Viridis",
|
326 |
+
colorbar=dict(title="Thermal Height (m)"),
|
327 |
+
),
|
328 |
+
text=[f"Thermal Height: {ht} m" for ht in thermal_top_values],
|
329 |
+
hoverinfo="text",
|
330 |
+
)
|
331 |
+
|
332 |
+
fig = go.Figure(scatter_map)
|
333 |
+
|
334 |
+
fig.update_layout(
|
335 |
+
map_style="open-street-map",
|
336 |
+
map=dict(center=dict(lat=61.22908, lon=7.09674), zoom=9),
|
337 |
+
margin={"r": 0, "t": 0, "l": 0, "b": 0},
|
338 |
)
|
339 |
+
|
340 |
+
# Register click event callback
|
341 |
+
|
342 |
+
return fig
|
343 |
+
|
344 |
+
|
345 |
+
from plotly.subplots import make_subplots
|
346 |
+
|
347 |
+
import numpy as np
|
348 |
+
import pandas as pd
|
349 |
+
import plotly.graph_objects as go
|
350 |
+
from plotly.subplots import make_subplots
|
351 |
+
import numpy as np
|
352 |
+
import pandas as pd
|
353 |
+
import plotly.graph_objects as go
|
354 |
+
from plotly.subplots import make_subplots
|
355 |
+
|
356 |
+
import pandas as pd
|
357 |
+
import numpy as np
|
358 |
+
import plotly.graph_objects as go
|
359 |
+
from plotly.subplots import make_subplots
|
360 |
+
from plotly.subplots import make_subplots
|
361 |
+
import numpy as np
|
362 |
+
import pandas as pd
|
363 |
+
import plotly.graph_objects as go
|
364 |
+
from plotly.subplots import make_subplots
|
365 |
+
import numpy as np
|
366 |
+
import pandas as pd
|
367 |
+
import plotly.graph_objects as go
|
368 |
+
|
369 |
+
|
370 |
+
def interpolate_color(
|
371 |
+
wind_speed, thresholds=[2, 8, 14], colors=["white", "green", "red", "black"]
|
372 |
+
):
|
373 |
+
# Normalize thresholds to range [0, 1]
|
374 |
+
norm_thresholds = [t / max(thresholds) for t in thresholds]
|
375 |
+
norm_thresholds = [0] + norm_thresholds + [1]
|
376 |
+
|
377 |
+
# Extend color list to match normalized thresholds
|
378 |
+
extended_colors = [colors[0]] + colors + [colors[-1]]
|
379 |
+
|
380 |
+
# Create colormap
|
381 |
+
cmap = LinearSegmentedColormap.from_list(
|
382 |
+
"wind_speed_cmap", list(zip(norm_thresholds, extended_colors)), N=256
|
383 |
)
|
384 |
|
385 |
+
# Normalize wind speed to range [0, 1] and get color
|
386 |
+
norm_wind_speed = wind_speed / max(thresholds)
|
387 |
+
return to_hex(cmap(np.clip(norm_wind_speed, 0, 1)))
|
388 |
+
|
389 |
+
|
390 |
+
def create_daily_thermal_and_wind_airgram(subset, x_target, y_target, date):
|
391 |
+
"""
|
392 |
+
Create a Plotly subplot figure for a single day's thermal and wind data.
|
393 |
+
The top subplot shows wind data as arrows for direction and color for strength.
|
394 |
+
The bottom subplot shows thermal temperature differences.
|
395 |
+
"""
|
396 |
+
# Define the time window to display
|
397 |
+
display_start_hour = 7
|
398 |
+
display_end_hour = 21
|
399 |
+
|
400 |
+
# Extract the day that matches the provided date
|
401 |
+
start_date = pd.Timestamp(date).normalize()
|
402 |
+
end_date = start_date + pd.Timedelta(days=1)
|
403 |
+
|
404 |
+
# Select data for the given date
|
405 |
+
daily_data = subset.sel(time=slice(start_date, end_date))
|
406 |
+
|
407 |
+
# Create time mask for the given display window
|
408 |
+
time_values = pd.to_datetime(
|
409 |
+
daily_data.time.values
|
410 |
+
) # Convert numpy.datetime64 to datetime
|
411 |
+
|
412 |
+
mask = [(display_start_hour <= t.hour < display_end_hour) for t in time_values]
|
413 |
+
|
414 |
+
# Filter data within the specified hours
|
415 |
+
daily_data = daily_data.isel(time=mask)
|
416 |
+
|
417 |
+
# Select nearest points for the supplied x and y indices
|
418 |
+
location_data = daily_data.sel(x=x_target, y=y_target, method="nearest")
|
419 |
+
|
420 |
+
# Interpolating the data for visualization
|
421 |
+
new_timestamps = pd.date_range(
|
422 |
+
start=start_date, end=end_date, freq="h"
|
423 |
+
) # Every full hour
|
424 |
+
|
425 |
+
# Remove timestamps that are outside the range of the data
|
426 |
+
new_timestamps = new_timestamps[
|
427 |
+
(new_timestamps >= location_data.time.min().values)
|
428 |
+
& (new_timestamps <= location_data.time.max().values)
|
429 |
+
]
|
430 |
+
|
431 |
+
altitudes_thermal = np.arange(0, 3000, 200) # Every 200 meters
|
432 |
+
altitudes_thermal = altitudes_thermal[
|
433 |
+
(altitudes_thermal >= location_data.altitude.min().values)
|
434 |
+
& (altitudes_thermal <= location_data.altitude.max().values)
|
435 |
]
|
436 |
+
|
437 |
+
# Interpolate thermal temperature difference for the specified times and altitudes
|
438 |
+
thermal_diff = (
|
439 |
+
location_data["thermal_temp_diff"]
|
440 |
+
.interp(time=new_timestamps, altitude=altitudes_thermal)
|
441 |
+
.T.values
|
|
|
|
|
442 |
)
|
443 |
|
444 |
+
# Generating time labels for the x-axis
|
445 |
+
times = [t.strftime("%H:%M") for t in new_timestamps]
|
446 |
|
447 |
+
# Calculate wind data at 500m intervals
|
448 |
+
altitudes_wind = np.arange(0, 3000, 500)
|
449 |
+
altitudes_wind = altitudes_wind[
|
450 |
+
(altitudes_wind >= location_data.altitude.min().values)
|
451 |
+
& (altitudes_wind <= location_data.altitude.max().values)
|
452 |
+
]
|
453 |
|
454 |
+
x_wind = location_data["x_wind_ml"].interp(
|
455 |
+
time=new_timestamps, altitude=altitudes_wind
|
456 |
+
)
|
457 |
+
y_wind = location_data["y_wind_ml"].interp(
|
458 |
+
time=new_timestamps, altitude=altitudes_wind
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
459 |
)
|
|
|
|
|
460 |
|
461 |
+
# Calculate wind speed and direction
|
462 |
+
speed = np.sqrt(x_wind**2 + y_wind**2).T.values
|
463 |
+
angles = np.rad2deg(np.arctan2(y_wind, x_wind)).T.values # Convert to degrees
|
464 |
+
angles = angles = (angles + 90) % 360
|
465 |
+
# Create a subplot figure with shared x-axis
|
466 |
+
fig = make_subplots(
|
467 |
+
rows=2,
|
468 |
+
cols=1,
|
469 |
+
shared_xaxes=True,
|
470 |
+
row_heights=[0.3, 0.7],
|
471 |
+
vertical_spacing=0.05,
|
472 |
+
subplot_titles=("Wind Speed and Direction", "Thermal Temperature Difference"),
|
473 |
+
)
|
474 |
|
475 |
+
# Add wind data plot as rotated triangular markers with a common legend
|
476 |
+
for i, alt in enumerate(altitudes_wind):
|
477 |
+
fig.add_trace(
|
478 |
+
go.Scatter(
|
479 |
+
x=times,
|
480 |
+
y=[alt] * len(times),
|
481 |
+
mode="markers",
|
482 |
+
marker=dict(
|
483 |
+
symbol="arrow",
|
484 |
+
size=20,
|
485 |
+
angle=angles[i],
|
486 |
+
color=[interpolate_color(s) for s in speed[i]],
|
487 |
+
# colorscale="Viridis",
|
488 |
+
showscale=False, # Hide individual color scales
|
489 |
+
cmin=0,
|
490 |
+
cmax=20,
|
491 |
+
),
|
492 |
+
hoverinfo="text",
|
493 |
+
text=[
|
494 |
+
f"Alt: {alt} m, Speed: {spd:.1f} m/s, Direction: {angle:.1f}°"
|
495 |
+
for spd, angle in zip(speed[i], angles[i])
|
496 |
+
],
|
497 |
+
),
|
498 |
+
row=1,
|
499 |
+
col=1,
|
500 |
+
)
|
501 |
+
fig.update_layout(showlegend=False)
|
502 |
+
|
503 |
+
# Add a legend indicator for the wind speed at the right of the plots
|
504 |
+
fig.add_shape(
|
505 |
+
type="rect",
|
506 |
+
x0=1.05,
|
507 |
+
y0=0.2,
|
508 |
+
x1=1.10,
|
509 |
+
y1=0.8,
|
510 |
+
xref="paper",
|
511 |
+
yref="paper",
|
512 |
+
line=dict(width=0),
|
513 |
+
fillcolor="rgba(0,0,0,0)",
|
514 |
+
)
|
515 |
|
516 |
+
annotations = [
|
517 |
+
dict(
|
518 |
+
x=1.15,
|
519 |
+
y=y,
|
520 |
+
text=f"{int(s)} m/s",
|
521 |
+
xref="paper",
|
522 |
+
yref="paper",
|
523 |
+
showarrow=False,
|
524 |
+
)
|
525 |
+
for y, s in zip(np.linspace(0.2, 0.8, 5), range(0, 20, 5))
|
526 |
+
]
|
527 |
+
fig.update_layout(annotations=annotations)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
528 |
|
529 |
+
# Add thermal data plot
|
530 |
+
fig.add_trace(
|
531 |
+
go.Heatmap(
|
532 |
+
z=thermal_diff,
|
533 |
+
x=times,
|
534 |
+
y=altitudes_thermal,
|
535 |
+
colorscale="YlGn",
|
536 |
+
colorbar=dict(
|
537 |
+
title="Thermal Temp Difference (°C)",
|
538 |
+
thickness=10,
|
539 |
+
ypad=75, # Moves the color bar vertically
|
540 |
+
),
|
541 |
+
zmin=0,
|
542 |
+
zmax=8,
|
543 |
+
text=thermal_diff.round(1),
|
544 |
+
texttemplate="%{text}",
|
545 |
+
textfont={"size": 12},
|
546 |
+
),
|
547 |
+
row=2,
|
548 |
+
col=1,
|
549 |
)
|
550 |
+
|
551 |
+
# Update layout
|
552 |
+
fig.update_layout(
|
553 |
+
height=800,
|
554 |
+
width=950,
|
555 |
+
title=f"Thermal and Wind Profiles for {start_date.strftime('%Y-%m-%d')}",
|
556 |
+
xaxis=dict(title="Time"),
|
557 |
+
yaxis=dict(title="Altitude (m)"),
|
558 |
+
xaxis2=dict(title="Time", tickangle=-45),
|
559 |
+
yaxis1=dict(title="Altitude (m)", range=[0, 3000]),
|
560 |
)
|
561 |
|
562 |
+
return fig
|
|
|
|
|
563 |
|
|
|
564 |
|
565 |
+
def create_daily_airgram(subset, x_target, y_target, date):
|
566 |
+
"""
|
567 |
+
Create a Plotly heatmap for a single day's wind and thermal data.
|
568 |
+
|
569 |
+
:param subset: xarray Dataset containing the weather data.
|
570 |
+
:param x_target: The x-coordinate index (not longitude) of the target location.
|
571 |
+
:param y_target: The y-coordinate index (not latitude) of the target location.
|
572 |
+
:param date: The specific date for which the data is visualized (datetime object).
|
573 |
+
:return: A Plotly figure object.
|
574 |
+
"""
|
575 |
+
# Define the time window to display
|
576 |
+
display_start_hour = 7
|
577 |
+
display_end_hour = 21
|
578 |
+
|
579 |
+
# Extract the day that matches the provided date
|
580 |
+
start_date = pd.Timestamp(date).normalize()
|
581 |
+
end_date = start_date + pd.Timedelta(days=1)
|
582 |
+
|
583 |
+
# Select data for the given date
|
584 |
+
daily_data = subset.sel(time=slice(start_date, end_date))
|
585 |
+
|
586 |
+
# Create time mask for the given display window
|
587 |
+
time_values = pd.to_datetime(
|
588 |
+
daily_data.time.values
|
589 |
+
) # Convert numpy.datetime64 to datetime
|
590 |
+
mask = [(display_start_hour <= t.hour < display_end_hour) for t in time_values]
|
591 |
+
|
592 |
+
# Filter data within the specified hours
|
593 |
+
daily_data = daily_data.isel(time=mask)
|
594 |
+
# Select nearest points for the supplied x and y indices
|
595 |
+
location_data = daily_data.sel(x=x_target, y=y_target, method="nearest")
|
596 |
+
|
597 |
+
# Interpolating the data for visualization
|
598 |
+
new_timestamps = pd.date_range(
|
599 |
+
start=start_date, end=end_date, freq="h"
|
600 |
+
) # Every full hour
|
601 |
+
|
602 |
+
# Remove timestamps that are outside the range of the data
|
603 |
+
new_timestamps = new_timestamps[
|
604 |
+
(new_timestamps >= location_data.time.min().values)
|
605 |
+
& (new_timestamps <= location_data.time.max().values)
|
606 |
+
]
|
607 |
|
608 |
+
altitudes = np.arange(0, 3000, 200) # Every 200 meters
|
609 |
+
# Remove altitude that are outside the range of the data
|
610 |
+
altitudes = altitudes[
|
611 |
+
(altitudes >= location_data.altitude.min().values)
|
612 |
+
& (altitudes <= location_data.altitude.max().values)
|
613 |
+
]
|
614 |
+
|
615 |
+
# Interpolate thermal temperature difference for the specified times and altitudes
|
616 |
+
thermal_diff = (
|
617 |
+
location_data["thermal_temp_diff"]
|
618 |
+
.interp(time=new_timestamps, altitude=altitudes)
|
619 |
+
.T.values
|
620 |
+
)
|
621 |
|
622 |
+
# Generating time labels for the x-axis
|
623 |
+
times = [t.strftime("%H:%M") for t in new_timestamps]
|
624 |
+
|
625 |
+
# Creating Plotly heatmap
|
626 |
+
fig = go.Figure(
|
627 |
+
data=go.Heatmap(
|
628 |
+
z=thermal_diff,
|
629 |
+
x=times,
|
630 |
+
y=altitudes,
|
631 |
+
colorscale="YlGn",
|
632 |
+
colorbar=dict(title="Thermal Temperature Difference (°C)"),
|
633 |
+
zmin=0,
|
634 |
+
zmax=8, # Adjusted for expected data range
|
635 |
+
text=thermal_diff.round(1),
|
636 |
+
texttemplate="%{text}",
|
637 |
+
textfont={"size": 12},
|
638 |
)
|
639 |
+
)
|
640 |
|
641 |
+
# Add wind speed information (if needed)
|
642 |
+
speed = (
|
643 |
+
np.sqrt(location_data["x_wind_ml"] ** 2 + location_data["y_wind_ml"] ** 2)
|
644 |
+
.interp(time=new_timestamps, altitude=altitudes)
|
645 |
+
.T.values
|
646 |
+
)
|
647 |
+
# fig.add_trace(
|
648 |
+
# go.Scatter(
|
649 |
+
# x=times,
|
650 |
+
# y=altitudes,
|
651 |
+
# mode="markers",
|
652 |
+
# marker=dict(
|
653 |
+
# size=8,
|
654 |
+
# color=speed,
|
655 |
+
# colorscale="Viridis",
|
656 |
+
# colorbar=dict(title="Wind Speed (m/s)"),
|
657 |
+
# cmin=0,
|
658 |
+
# cmax=20, # Adjusted for expected data range
|
659 |
+
# ),
|
660 |
+
# hoverinfo="text",
|
661 |
+
# text=[f"Speed: {s:.2f} m/s" for s in speed.flatten()],
|
662 |
+
# )
|
663 |
+
# )
|
664 |
|
665 |
+
# Update layout
|
666 |
+
fig.update_layout(
|
667 |
+
title=f"Thermal Profiles for {start_date.strftime('%Y-%m-%d')}",
|
668 |
+
xaxis=dict(title="Time"),
|
669 |
+
yaxis=dict(title="Altitude (m)"),
|
670 |
+
xaxis_tickangle=-45,
|
671 |
+
)
|
672 |
+
|
673 |
+
return fig
|
674 |
+
|
675 |
+
|
676 |
+
def show_forecast():
|
677 |
+
subset = load_data()
|
678 |
+
|
679 |
+
date_controls(subset)
|
680 |
+
# time_start = datetime.time(0, 0)
|
681 |
+
# # convert subset.attrs['min_time']='2024-05-11T06:00:00Z' into datetime
|
682 |
+
# min_time = datetime.datetime.strptime(
|
683 |
+
# subset.attrs["min_time"], "%Y-%m-%dT%H:%M:%SZ"
|
684 |
+
# )
|
685 |
+
# date_start = datetime.datetime.combine(st.session_state.forecast_date, time_start)
|
686 |
+
# date_start = max(date_start, min_time)
|
687 |
+
|
688 |
+
## MAP
|
689 |
+
with st.expander("Map", expanded=True):
|
690 |
+
map_fig = build_map(
|
691 |
+
_subset=subset,
|
692 |
+
date=st.session_state.forecast_date,
|
693 |
+
hour=st.session_state.forecast_time,
|
694 |
+
)
|
695 |
+
st.plotly_chart(map_fig, use_container_width=True, config={"scrollZoom": True})
|
696 |
|
697 |
x_target, y_target = latlon_to_xy(
|
698 |
st.session_state.target_latitude, st.session_state.target_longitude
|
699 |
)
|
700 |
+
wind_fig = create_daily_thermal_and_wind_airgram(
|
701 |
subset,
|
|
|
|
|
|
|
702 |
x_target=x_target,
|
703 |
y_target=y_target,
|
704 |
+
date=st.session_state.forecast_date,
|
705 |
)
|
706 |
+
# wind_fig = create_wind_map(
|
707 |
+
# subset,
|
708 |
+
# date_start=date_start,
|
709 |
+
# date_end=date_end,
|
710 |
+
# altitude_max=st.session_state.altitude_max,
|
711 |
+
# x_target=x_target,
|
712 |
+
# y_target=y_target,
|
713 |
+
# )
|
714 |
+
st.plotly_chart(wind_fig)
|
715 |
plt.close()
|
716 |
|
717 |
with st.expander("More settings", expanded=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
718 |
st.session_state.altitude_max = st.number_input(
|
719 |
"Max altitude", 0, 4000, 3000, step=500
|
720 |
)
|
|
|
744 |
"Wind and sounding data from MEPS model (main model used by met.no), including the estimated ground temperature. Ive probably made many errors in this process."
|
745 |
)
|
746 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
747 |
|
748 |
if __name__ == "__main__":
|
749 |
run_streamlit = True
|
|
|
755 |
lon = 7.09674
|
756 |
x_target, y_target = latlon_to_xy(lat, lon)
|
757 |
|
|
|
|
|
|
|
758 |
build_map_overlays(subset, date="2024-05-14", hour="16")
|
759 |
|
760 |
wind_fig = create_wind_map(
|
preprocess_forecast.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import xarray as xr
|
2 |
+
from siphon.catalog import TDSCatalog
|
3 |
+
import numpy as np
|
4 |
+
import datetime
|
5 |
+
import re
|
6 |
+
|
7 |
+
|
8 |
+
# %%
|
9 |
+
def compute_thermal_temp_difference(subset):
|
10 |
+
lapse_rate = 0.0098
|
11 |
+
ground_temp = subset.air_temperature_0m - 273.3
|
12 |
+
air_temp = subset["air_temperature_ml"] - 273.3 # .ffill(dim='altitude')
|
13 |
+
|
14 |
+
# dimensions
|
15 |
+
# 'air_temperature_ml' altitude: 4 y: 3, x: 3
|
16 |
+
# 'elevation' y: 3 x: 3
|
17 |
+
# 'altitude' altitude: 4
|
18 |
+
|
19 |
+
# broadcast ground temperature to all altitudes, but let it decrease by lapse rate
|
20 |
+
altitude_diff = subset.altitude - subset.elevation
|
21 |
+
altitude_diff = altitude_diff.where(altitude_diff >= 0, 0)
|
22 |
+
temp_decrease = lapse_rate * altitude_diff
|
23 |
+
ground_parcel_temp = ground_temp - temp_decrease
|
24 |
+
thermal_temp_diff = (ground_parcel_temp - air_temp).clip(min=0)
|
25 |
+
return thermal_temp_diff
|
26 |
+
|
27 |
+
|
28 |
+
def extract_timestamp(filename):
|
29 |
+
# Define a regex pattern to capture the timestamp
|
30 |
+
pattern = r"(\d{4})(\d{2})(\d{2})T(\d{2})Z"
|
31 |
+
match = re.search(pattern, filename)
|
32 |
+
|
33 |
+
if match:
|
34 |
+
year, month, day, hour = match.groups()
|
35 |
+
return f"{year}-{month}-{day}T{hour}:00Z"
|
36 |
+
else:
|
37 |
+
return None
|
38 |
+
|
39 |
+
|
40 |
+
def find_latest_meps_file():
|
41 |
+
# The MEPS dataset: https://github.com/metno/NWPdocs/wiki/MEPS-dataset
|
42 |
+
today = datetime.datetime.today()
|
43 |
+
catalog_url = f"https://thredds.met.no/thredds/catalog/meps25epsarchive/{today.year}/{today.month:02d}/{today.day:02d}/catalog.xml"
|
44 |
+
file_url_base = f"https://thredds.met.no/thredds/dodsC/meps25epsarchive/{today.year}/{today.month:02d}/{today.day:02d}"
|
45 |
+
# Get the datasets from the catalog
|
46 |
+
catalog = TDSCatalog(catalog_url)
|
47 |
+
datasets = [s for s in catalog.datasets if "meps_det_ml" in s]
|
48 |
+
file_path = f"{file_url_base}/{sorted(datasets)[-1]}"
|
49 |
+
return file_path
|
50 |
+
|
51 |
+
|
52 |
+
def load_meps_for_location(file_path=None, altitude_min=0, altitude_max=3000):
|
53 |
+
"""
|
54 |
+
file_path=None
|
55 |
+
altitude_min=0
|
56 |
+
altitude_max=3000
|
57 |
+
"""
|
58 |
+
|
59 |
+
if file_path is None:
|
60 |
+
file_path = find_latest_meps_file()
|
61 |
+
|
62 |
+
x_range = "[220:1:300]"
|
63 |
+
y_range = "[420:1:500]"
|
64 |
+
time_range = "[0:1:66]"
|
65 |
+
hybrid_range = "[25:1:64]"
|
66 |
+
height_range = "[0:1:0]"
|
67 |
+
|
68 |
+
params = {
|
69 |
+
"x": x_range,
|
70 |
+
"y": y_range,
|
71 |
+
"time": time_range,
|
72 |
+
"hybrid": hybrid_range,
|
73 |
+
"height": height_range,
|
74 |
+
"longitude": f"{y_range}{x_range}",
|
75 |
+
"latitude": f"{y_range}{x_range}",
|
76 |
+
"air_temperature_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
|
77 |
+
"ap": f"{hybrid_range}",
|
78 |
+
"b": f"{hybrid_range}",
|
79 |
+
"surface_air_pressure": f"{time_range}{height_range}{y_range}{x_range}",
|
80 |
+
"x_wind_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
|
81 |
+
"y_wind_ml": f"{time_range}{hybrid_range}{y_range}{x_range}",
|
82 |
+
}
|
83 |
+
|
84 |
+
path = f"{file_path}?{','.join(f'{k}{v}' for k, v in params.items())}"
|
85 |
+
|
86 |
+
subset = xr.open_dataset(path, cache=True)
|
87 |
+
subset.load()
|
88 |
+
|
89 |
+
# get geopotential
|
90 |
+
time_range_sfc = "[0:1:0]"
|
91 |
+
surf_params = {
|
92 |
+
"x": x_range,
|
93 |
+
"y": y_range,
|
94 |
+
"time": f"{time_range}",
|
95 |
+
"surface_geopotential": f"{time_range_sfc}[0:1:0]{y_range}{x_range}",
|
96 |
+
"air_temperature_0m": f"{time_range}[0:1:0]{y_range}{x_range}",
|
97 |
+
}
|
98 |
+
file_path_surf = f"{file_path.replace('meps_det_ml', 'meps_det_sfc')}?{','.join(f'{k}{v}' for k, v in surf_params.items())}"
|
99 |
+
|
100 |
+
# Load surface parameters and merge into the main dataset
|
101 |
+
surf = xr.open_dataset(file_path_surf, cache=True)
|
102 |
+
# Convert the surface geopotential to elevation
|
103 |
+
elevation = (surf.surface_geopotential / 9.80665).squeeze()
|
104 |
+
# elevation.plot()
|
105 |
+
subset["elevation"] = elevation
|
106 |
+
air_temperature_0m = surf.air_temperature_0m.squeeze()
|
107 |
+
subset["air_temperature_0m"] = air_temperature_0m
|
108 |
+
|
109 |
+
# subset.elevation.plot()
|
110 |
+
def hybrid_to_height(ds):
|
111 |
+
"""
|
112 |
+
ds = subset
|
113 |
+
"""
|
114 |
+
# Constants
|
115 |
+
R = 287.05 # Gas constant for dry air
|
116 |
+
g = 9.80665 # Gravitational acceleration
|
117 |
+
|
118 |
+
# Calculate the pressure at each level
|
119 |
+
p = ds["ap"] + ds["b"] * ds["surface_air_pressure"] # .mean("ensemble_member")
|
120 |
+
|
121 |
+
# Get the temperature at each level
|
122 |
+
T = ds["air_temperature_ml"] # .mean("ensemble_member")
|
123 |
+
|
124 |
+
# Calculate the height difference between each level and the surface
|
125 |
+
dp = ds["surface_air_pressure"] - p # Pressure difference
|
126 |
+
dT = T - T.isel(hybrid=-1) # Temperature difference relative to the surface
|
127 |
+
dT_mean = 0.5 * (T + T.isel(hybrid=-1)) # Mean temperature
|
128 |
+
|
129 |
+
# Calculate the height using the hypsometric equation
|
130 |
+
dz = (R * dT_mean / g) * np.log(ds["surface_air_pressure"] / p)
|
131 |
+
|
132 |
+
return dz
|
133 |
+
|
134 |
+
altitude = hybrid_to_height(subset).mean("time").squeeze().mean("x").mean("y")
|
135 |
+
subset = subset.assign_coords(altitude=("hybrid", altitude.data))
|
136 |
+
subset = subset.swap_dims({"hybrid": "altitude"})
|
137 |
+
|
138 |
+
# filter subset on altitude ranges
|
139 |
+
subset = subset.where(
|
140 |
+
(subset.altitude >= altitude_min) & (subset.altitude <= altitude_max), drop=True
|
141 |
+
).squeeze()
|
142 |
+
|
143 |
+
wind_speed = np.sqrt(subset["x_wind_ml"] ** 2 + subset["y_wind_ml"] ** 2)
|
144 |
+
subset = subset.assign(wind_speed=(("time", "altitude", "y", "x"), wind_speed.data))
|
145 |
+
|
146 |
+
subset["thermal_temp_diff"] = compute_thermal_temp_difference(subset)
|
147 |
+
# subset = subset.assign(thermal_temp_diff=(('time', 'altitude','y','x'), thermal_temp_diff.data))
|
148 |
+
|
149 |
+
# Find the indices where the thermal temperature difference is zero or negative
|
150 |
+
# Create tiny value at ground level to avoid finding the ground as the thermal top
|
151 |
+
thermal_temp_diff = subset["thermal_temp_diff"]
|
152 |
+
thermal_temp_diff = thermal_temp_diff.where(
|
153 |
+
(thermal_temp_diff.sum("altitude") > 0)
|
154 |
+
| (subset["altitude"] != subset.altitude.min()),
|
155 |
+
thermal_temp_diff + 1e-6,
|
156 |
+
)
|
157 |
+
indices = (thermal_temp_diff > 0).argmax(dim="altitude")
|
158 |
+
# Get the altitudes corresponding to these indices
|
159 |
+
thermal_top = subset.altitude[indices]
|
160 |
+
subset = subset.assign(thermal_top=(("time", "y", "x"), thermal_top.data))
|
161 |
+
subset = subset.set_coords(["latitude", "longitude"])
|
162 |
+
return subset
|
163 |
+
|
164 |
+
|
165 |
+
if __name__ == "__main__":
|
166 |
+
dataset_file_path = find_latest_meps_file()
|
167 |
+
|
168 |
+
subset = load_meps_for_location(dataset_file_path)
|
169 |
+
|
170 |
+
os.makedirs("forecasts", exist_ok=True)
|
171 |
+
|
172 |
+
timestmap = extract_timestamp(dataset_file_path.split("/")[-1])
|
173 |
+
subset.to_netcdf(f"forecasts/{timestmap}.nc")
|
pyproject.toml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[project]
|
2 |
+
name = "pgweather"
|
3 |
+
version = "0.1.0"
|
4 |
+
description = "Add your description here"
|
5 |
+
readme = "README.md"
|
6 |
+
requires-python = ">=3.9"
|
7 |
+
dependencies = [
|
8 |
+
"bottleneck>=1.4.2",
|
9 |
+
"folium>=0.19.4",
|
10 |
+
"geopandas>=0.10.2",
|
11 |
+
"ipykernel>=6.29.5",
|
12 |
+
"matplotlib>=3.9.4",
|
13 |
+
"metar>=1.8.0",
|
14 |
+
"netcdf4>=1.7.2",
|
15 |
+
"numpy>=2.0.2",
|
16 |
+
"pandas>=1.1.3",
|
17 |
+
"plotly>=4.12.0",
|
18 |
+
"python-dateutil>=2.8.1",
|
19 |
+
"requests>=2.24.0",
|
20 |
+
"scipy>=1.13.1",
|
21 |
+
"shapely>=2.0.7",
|
22 |
+
"siphon>=0.9",
|
23 |
+
"streamlit-folium>=0.24.0",
|
24 |
+
"streamlit>=0.85.1",
|
25 |
+
"windrose>=1.9.2",
|
26 |
+
"xarray>=2024.7.0",
|
27 |
+
"nbformat>=5.10.4",
|
28 |
+
"anywidget>=0.9.15",
|
29 |
+
]
|
utils.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pyproj
|
2 |
+
|
3 |
+
|
4 |
+
def latlon_to_xy(lat, lon):
|
5 |
+
crs = pyproj.CRS.from_cf(
|
6 |
+
{
|
7 |
+
"grid_mapping_name": "lambert_conformal_conic",
|
8 |
+
"standard_parallel": [63.3, 63.3],
|
9 |
+
"longitude_of_central_meridian": 15.0,
|
10 |
+
"latitude_of_projection_origin": 63.3,
|
11 |
+
"earth_radius": 6371000.0,
|
12 |
+
}
|
13 |
+
)
|
14 |
+
# Transformer to project from ESPG:4368 (WGS:84) to our lambert_conformal_conic
|
15 |
+
proj = pyproj.Proj.from_crs(4326, crs, always_xy=True)
|
16 |
+
|
17 |
+
# Compute projected coordinates of lat/lon point
|
18 |
+
X, Y = proj.transform(lon, lat)
|
19 |
+
return X, Y
|
uv.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|