Spaces:
Runtime error
Runtime error
Simon Duerr
commited on
Commit
·
ed7e222
1
Parent(s):
a5f62d5
add UI alpha
Browse files- README.md +2 -1
- app.py +315 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -10,4 +10,5 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
UI for RoseTTAfold2 All Atom version built by @simonduerr
|
14 |
+
|
app.py
ADDED
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Input UI for RoseTTAfold All Atom
|
3 |
+
|
4 |
+
using two custom gradio components: gradio_molecule3d and gradio_cofoldinginput
|
5 |
+
"""
|
6 |
+
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
from gradio_cofoldinginput import CofoldingInput
|
10 |
+
|
11 |
+
from gradio_molecule3d import Molecule3D
|
12 |
+
|
13 |
+
import json
|
14 |
+
import yaml
|
15 |
+
from openbabel import openbabel
|
16 |
+
|
17 |
+
import zipfile
|
18 |
+
import tempfile
|
19 |
+
|
20 |
+
import os
|
21 |
+
|
22 |
+
from Bio.PDB import PDBParser, PDBIO
|
23 |
+
|
24 |
+
baseconfig = """job_name: "structure_prediction"
|
25 |
+
output_path: ""
|
26 |
+
checkpoint_path: RFAA_paper_weights.pt
|
27 |
+
database_params:
|
28 |
+
sequencedb: ""
|
29 |
+
hhdb: "pdb100_2021Mar03/pdb100_2021Mar03"
|
30 |
+
command: make_msa.sh
|
31 |
+
num_cpus: 4
|
32 |
+
mem: 64
|
33 |
+
protein_inputs: null
|
34 |
+
na_inputs: null
|
35 |
+
sm_inputs: null
|
36 |
+
covale_inputs: null
|
37 |
+
residue_replacement: null
|
38 |
+
|
39 |
+
chem_params:
|
40 |
+
use_phospate_frames_for_NA: True
|
41 |
+
use_cif_ordering_for_trp: True
|
42 |
+
|
43 |
+
loader_params:
|
44 |
+
n_templ: 4
|
45 |
+
MAXLAT: 128
|
46 |
+
MAXSEQ: 1024
|
47 |
+
MAXCYCLE: 4
|
48 |
+
BLACK_HOLE_INIT: False
|
49 |
+
seqid: 150.0
|
50 |
+
|
51 |
+
|
52 |
+
legacy_model_param:
|
53 |
+
n_extra_block: 4
|
54 |
+
n_main_block: 32
|
55 |
+
n_ref_block: 4
|
56 |
+
n_finetune_block: 0
|
57 |
+
d_msa: 256
|
58 |
+
d_msa_full: 64
|
59 |
+
d_pair: 192
|
60 |
+
d_templ: 64
|
61 |
+
n_head_msa: 8
|
62 |
+
n_head_pair: 6
|
63 |
+
n_head_templ: 4
|
64 |
+
d_hidden_templ: 64
|
65 |
+
p_drop: 0.0
|
66 |
+
use_chiral_l1: True
|
67 |
+
use_lj_l1: True
|
68 |
+
use_atom_frames: True
|
69 |
+
recycling_type: "all"
|
70 |
+
use_same_chain: True
|
71 |
+
lj_lin: 0.75
|
72 |
+
SE3_param:
|
73 |
+
num_layers: 1
|
74 |
+
num_channels: 32
|
75 |
+
num_degrees: 2
|
76 |
+
l0_in_features: 64
|
77 |
+
l0_out_features: 64
|
78 |
+
l1_in_features: 3
|
79 |
+
l1_out_features: 2
|
80 |
+
num_edge_features: 64
|
81 |
+
n_heads: 4
|
82 |
+
div: 4
|
83 |
+
SE3_ref_param:
|
84 |
+
num_layers: 2
|
85 |
+
num_channels: 32
|
86 |
+
num_degrees: 2
|
87 |
+
l0_in_features: 64
|
88 |
+
l0_out_features: 64
|
89 |
+
l1_in_features: 3
|
90 |
+
l1_out_features: 2
|
91 |
+
num_edge_features: 64
|
92 |
+
n_heads: 4
|
93 |
+
div: 4
|
94 |
+
"""
|
95 |
+
|
96 |
+
def convert_format(input_file, jobname, chain, deleteIndexes, attachmentIndex):
|
97 |
+
|
98 |
+
conv = openbabel.OBConversion()
|
99 |
+
conv.SetInAndOutFormats('cdjson', 'sdf')
|
100 |
+
|
101 |
+
# Add options
|
102 |
+
conv.AddOption("c", openbabel.OBConversion.OUTOPTIONS, "1")
|
103 |
+
with open(f"{jobname}_sm_{chain}.json", "w+") as fp:
|
104 |
+
fp.write(input_file)
|
105 |
+
mol = openbabel.OBMol()
|
106 |
+
conv.ReadFile(mol, f"{jobname}_sm_{chain}.json")
|
107 |
+
|
108 |
+
deleted_count = 0
|
109 |
+
# delete atoms in delete indexes
|
110 |
+
for index in sorted(deleteIndexes, reverse=True):
|
111 |
+
if index < attachmentIndex:
|
112 |
+
deleted_count += 1
|
113 |
+
atom = mol.GetAtom(index)
|
114 |
+
mol.DeleteAtom(atom)
|
115 |
+
|
116 |
+
attachmentIndex -= deleted_count
|
117 |
+
|
118 |
+
conv.WriteFile(mol, f"{jobname}_sm_{chain}.sdf")
|
119 |
+
return attachmentIndex
|
120 |
+
|
121 |
+
|
122 |
+
def prepare_input(input, jobname, baseconfig, hard_case):
|
123 |
+
input_categories = {"protein":"protein_inputs", "DNA":"na_inputs","RNA":"na_inputs", "ligand":"sm_inputs"}
|
124 |
+
|
125 |
+
# convert input to yaml format
|
126 |
+
yaml_dict = {"defaults":["base"], "job_name":jobname, "output_path": jobname}
|
127 |
+
list_of_input_files = []
|
128 |
+
|
129 |
+
if len(input["chains"]) == 0:
|
130 |
+
raise gr.Error("At least one chain must be provided")
|
131 |
+
for chain in input["chains"]:
|
132 |
+
if input_categories[chain["class"]] not in yaml_dict.keys():
|
133 |
+
yaml_dict[input_categories[chain["class"]]] = {}
|
134 |
+
|
135 |
+
if input_categories[chain["class"]] in ["protein_inputs", "na_inputs"]:
|
136 |
+
#write fasta
|
137 |
+
with open(f"{jobname}_{chain['chain']}.fasta", "w+") as fp:
|
138 |
+
fp.write(f">chain A\n{chain['sequence']}")
|
139 |
+
if input_categories[chain["class"]] == "na_inputs":
|
140 |
+
entry = {"input_type":chain["class"].lower(), "fasta":f"{jobname}/{jobname}_{chain['chain']}.fasta"}
|
141 |
+
else:
|
142 |
+
entry = {"fasta_file": f"{jobname}/{jobname}_{chain['chain']}.fasta"}
|
143 |
+
list_of_input_files.append(f"{jobname}_{chain['chain']}.fasta")
|
144 |
+
yaml_dict[input_categories[chain["class"]]][chain['chain']] = entry
|
145 |
+
|
146 |
+
if input_categories[chain['class']] == "sm_inputs":
|
147 |
+
if "smiles" in chain.keys():
|
148 |
+
entry = {"input_type": "smiles", "input": chain["smiles"]}
|
149 |
+
elif "sdf" in chain.keys():
|
150 |
+
# write to file
|
151 |
+
with open(f"{jobname}_sm_{chain['chain']}.sdf", "w+") as fp:
|
152 |
+
fp.write(chain["sdf"])
|
153 |
+
list_of_input_files.append(f"{jobname}_sm_{chain['chain']}.sdf")
|
154 |
+
entry = {"input_type": "sdf", "input": f"{jobname}/{jobname}_sm_{chain['chain']}.sdf"}
|
155 |
+
elif "name" in chain.keys():
|
156 |
+
list_of_input_files.append(f"metal_sdf/{chain['name']}_ideal.sdf")
|
157 |
+
entry = {"input_type": "sdf", "input": f"{jobname}/{chain['name']}_ideal.sdf"}
|
158 |
+
yaml_dict["sm_inputs"][chain['chain']] = entry
|
159 |
+
|
160 |
+
covale_inputs = []
|
161 |
+
if len(input["covMods"])>0:
|
162 |
+
yaml_dict["covale_inputs"]=""
|
163 |
+
|
164 |
+
for covMod in input["covMods"]:
|
165 |
+
if len(covMod["deleteIndexes"])>0:
|
166 |
+
new_attachment_index = convert_format(covMod["mol"],jobname, covMod["ligand"], covMod["deleteIndexes"], covMod["attachmentIndex"])
|
167 |
+
chirality_ligand = "null"
|
168 |
+
chirality_protein = "null"
|
169 |
+
if covMod["protein_symmetry"] in ["CW", "CCW"]:
|
170 |
+
chirality_protein = covMod["protein_symmetry"]
|
171 |
+
if covMod["ligand_symmetry"] in ["CW", "CCW"]:
|
172 |
+
chirality_ligand = covMod["ligand_symmetry"]
|
173 |
+
covale_inputs.append(((covMod[ "protein"], covMod["residue"], covMod["atom"]), (covMod["ligand"], new_attachment_index), (chirality_protein, chirality_ligand)))
|
174 |
+
if len(input["covMods"])>0:
|
175 |
+
yaml_dict["covale_inputs"] = json.dumps(json.dumps(covale_inputs))[1:-1].replace("'", "\"")
|
176 |
+
|
177 |
+
if hard_case:
|
178 |
+
yaml_dict["loader_params"]= {}
|
179 |
+
yaml_dict["loader_params"]["MAXCYCLE"] = 10
|
180 |
+
# write yaml to tmp
|
181 |
+
with open(f"/tmp/{jobname}.yaml", "w+") as fp:
|
182 |
+
# need to convert single quotes to double quotes
|
183 |
+
fp.write(yaml.dump(yaml_dict).replace("'", "\""))
|
184 |
+
|
185 |
+
# write baseconfig
|
186 |
+
with open(f"/tmp/base.yaml", "w+") as fp:
|
187 |
+
fp.write(baseconfig)
|
188 |
+
|
189 |
+
list_of_input_files.append(f"/tmp/{jobname}.yaml")
|
190 |
+
list_of_input_files.append(f"/tmp/base.yaml")
|
191 |
+
# convert dictionary to YAML
|
192 |
+
with zipfile.ZipFile(os.path.join("/tmp/", f"{jobname}.zip"), 'w') as zip_archive:
|
193 |
+
for file in set(list_of_input_files):
|
194 |
+
zip_archive.write(file, arcname= os.path.join(jobname,os.path.basename(file)),compress_type=zipfile.ZIP_DEFLATED)
|
195 |
+
|
196 |
+
return yaml.dump(yaml_dict).replace("'", "\""),os.path.join("/tmp/", f"{jobname}.zip")
|
197 |
+
|
198 |
+
def run_rf2aa(jobname, zip_archive):
|
199 |
+
current_dir = os.getcwd()
|
200 |
+
try:
|
201 |
+
with zipfile.ZipFile(zip_archive, 'r') as zip_ref:
|
202 |
+
zip_ref.extractall(os.path.join(current_dir))
|
203 |
+
os.system(f"python -m rf2aa.run_inference --config-name {jobname}.yaml --config-path {current_dir}/{jobname}")
|
204 |
+
# scale pLDDT to 0-100 range in pdb output file
|
205 |
+
parser = PDBParser(QUIET=True)
|
206 |
+
structure = parser.get_structure(jobname, f"{current_dir}/{jobname}/{jobname}.pdb")
|
207 |
+
for model in structure:
|
208 |
+
for chain in model:
|
209 |
+
for residue in chain:
|
210 |
+
for atom in residue:
|
211 |
+
atom.bfactor = atom.bfactor * 100
|
212 |
+
io = PDBIO()
|
213 |
+
io.set_structure(structure)
|
214 |
+
io.save(f"{current_dir}/{jobname}/{jobname}.pdb")
|
215 |
+
|
216 |
+
except Exception as e:
|
217 |
+
raise gr.Error(f"Error running RFAA: {e}")
|
218 |
+
return f"{current_dir}/{jobname}/{jobname}.pdb"
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
def predict(input, jobname, dry_run, baseconfig, hard_case):
|
223 |
+
yaml_input, zip_archive = prepare_input(input, jobname, baseconfig, hard_case)
|
224 |
+
|
225 |
+
reps = []
|
226 |
+
|
227 |
+
for chain in input["chains"]:
|
228 |
+
if chain["class"] in ["protein", "RNA", "DNA"]:
|
229 |
+
reps.append({
|
230 |
+
"model": 0,
|
231 |
+
"chain": chain["chain"],
|
232 |
+
"resname": "",
|
233 |
+
"style": "cartoon",
|
234 |
+
"color": "alphafold",
|
235 |
+
"residue_range": "",
|
236 |
+
"around": 0,
|
237 |
+
"byres": False
|
238 |
+
})
|
239 |
+
elif chain["class"] == "ligand" and "name" not in chain.keys():
|
240 |
+
reps.append({
|
241 |
+
"model": 0,
|
242 |
+
"chain": chain["chain"],
|
243 |
+
"resname": "LG1",
|
244 |
+
"style": "stick",
|
245 |
+
"color": "whiteCarbon",
|
246 |
+
"residue_range": "",
|
247 |
+
"around": 0,
|
248 |
+
"byres": False
|
249 |
+
})
|
250 |
+
else:
|
251 |
+
reps.append({
|
252 |
+
"model": 0,
|
253 |
+
"chain": chain["chain"],
|
254 |
+
"resname": "LG1",
|
255 |
+
"style": "sphere",
|
256 |
+
"color": "whiteCarbon",
|
257 |
+
"residue_range": "",
|
258 |
+
"around": 0,
|
259 |
+
"byres": False
|
260 |
+
})
|
261 |
+
if dry_run:
|
262 |
+
return gr.Code(yaml_input, visible=True), gr.File(zip_archive, visible=True), gr.Markdown(f"""You can run your RFAA job using the following command: <pre>python -m rf2aa.run_inference --config-name {jobname}.yaml --config-path absolute/path/to/unzipped/{jobname}</pre>""", visible=True), Molecule3D(visible=False)
|
263 |
+
else:
|
264 |
+
pdb_file = run_rf2aa(jobname, zip_archive)
|
265 |
+
return gr.Code(yaml_input, visible=True), gr.File(zip_archive, visible=True),gr.Markdown(visible=False), Molecule3D(pdb_file,reps=reps,visible=True)
|
266 |
+
|
267 |
+
with gr.Blocks() as demo:
|
268 |
+
gr.Markdown("# RoseTTAFold All Atom UI")
|
269 |
+
gr.Markdown("""This UI allows you to generate input files for RoseTTAFold All Atom (RFAA) using the CofoldingInput widget. The input files can be used to run RFAA on your local machine. <br />
|
270 |
+
If you launch the UI directly on your local machine you can also directly run the RFAA prediction. <br />
|
271 |
+
More information in the official GitHub repository: [baker-laboratory/RoseTTAFold-All-Atom](https://github.com/baker-laboratory/RoseTTAFold-All-Atom)
|
272 |
+
""")
|
273 |
+
jobname = gr.Textbox("job1", label="Job Name")
|
274 |
+
with gr.Tab("Input"):
|
275 |
+
inp=CofoldingInput(label="Input")
|
276 |
+
hard_case = gr.Checkbox(False, label="Hard case (increase MAXCYCLE to 10)")
|
277 |
+
if os.environ.get("SPACE_HOST")=="":
|
278 |
+
dry_run = gr.Checkbox(True, label="Only generate input files (dry run)", interactive=False)
|
279 |
+
else:
|
280 |
+
dry_run = gr.Checkbox(True, label="Only generate input files (dry run)")
|
281 |
+
with gr.Tab("Base config"):
|
282 |
+
base_config = gr.Code(baseconfig, label="Base config")
|
283 |
+
btn = gr.Button("Run")
|
284 |
+
config_file = gr.Code(label="YAML Hydra config for RFAA", visible=True)
|
285 |
+
runfiles = gr.File(label="files to run RFAA", visible=False)
|
286 |
+
instructions = gr.Markdown(visible=False)
|
287 |
+
|
288 |
+
# reps = [
|
289 |
+
# {
|
290 |
+
# "model": 0,
|
291 |
+
# "chain": "",
|
292 |
+
# "resname": "",
|
293 |
+
# "style": "cartoon",
|
294 |
+
# "color": "alphafold",
|
295 |
+
# "residue_range": "",
|
296 |
+
# "around": 0,
|
297 |
+
# "byres": False
|
298 |
+
# },
|
299 |
+
# {
|
300 |
+
# "model": 0,
|
301 |
+
# "chain": "",
|
302 |
+
# "resname": "LG1",
|
303 |
+
# "style": "stick",
|
304 |
+
# "color": "whiteCarbon",
|
305 |
+
# "residue_range": "",
|
306 |
+
# "around": 0,
|
307 |
+
# "byres": False,
|
308 |
+
# }
|
309 |
+
# ]
|
310 |
+
out = Molecule3D(visible=False)
|
311 |
+
|
312 |
+
btn.click(predict, inputs=[inp, jobname, dry_run, base_config, hard_case], outputs=[config_file, runfiles, instructions, out])
|
313 |
+
|
314 |
+
if __name__ == "__main__":
|
315 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio_molecule3d
|
2 |
+
gradio_cofoldinginput
|
3 |
+
openbabel-wheel
|