File size: 1,212 Bytes
b61753c e965642 b61753c e965642 7860afc e965642 7860afc e965642 b61753c e965642 b61753c e965642 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import gradio as gr
from gradio_cofoldinginput import CofoldingInput
import json
def predict(input):
input = json.dumps(input)
return input
with gr.Blocks() as demo:
jobname = gr.Textbox(label="Job Name")
inp=CofoldingInput(label="Input")
preinput = {"chains": [
{
"class": "DNA",
"sequence": "ATGCGT",
"chain": "A",
"msa": True
},
{
"class": "protein",
"sequence": "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA",
"chain": "B",
"msa": True
},
{
"class": "ligand",
"name": "ZN",
"smiles": "",
"sdf": "",
"chain": "C"
},
{
"class": "ligand",
"smiles": "CCCCCCCCCCCCCCCCCCCC",
"name": "",
"sdf": "",
"chain": "D"
}
], "covMods":[]
}
# inp2=CofoldingInput(preinput, label="Input prefilled")
btn = gr.Button("Submit")
out = gr.HTML()
gr.Examples([["test",preinput]], inputs=[jobname,inp])
btn.click(predict, inputs=[inp], outputs=[out])
if __name__ == "__main__":
demo.launch()
|