Spaces:
Runtime error
Runtime error
simonschoe
commited on
Commit
β’
b06fb6c
1
Parent(s):
f746c89
update examples
Browse files
app.py
CHANGED
@@ -68,13 +68,19 @@ with app:
|
|
68 |
The model allows for two use cases:
|
69 |
1. *Single Search:* The input query consists of a single word. When provided a bi-, tri-, or even fourgram, the quality of the model output depends on the presence of the query token in the model's vocabulary. N-grams should be concated by an underscore (e.g., "machine_learning" or "artifical_intelligence").
|
70 |
2. *Multi Search:* The input query may consist of several words or n-grams, seperated by comma, semi-colon or newline. It then computes the average vector over all inputs and performs semantic search based on the average input token.
|
71 |
-
|
72 |
-
#### Examples
|
73 |
-
- transformation
|
74 |
-
- climate_change
|
75 |
-
- risk, political_risk, uncertainty
|
76 |
"""
|
77 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
with gr.Column():
|
79 |
text_in = gr.Textbox(lines=1, placeholder="Insert text", label="Search Query")
|
80 |
with gr.Row():
|
@@ -82,13 +88,7 @@ with app:
|
|
82 |
compute_bt = gr.Button("Search")
|
83 |
df_out = gr.Dataframe(interactive=False)
|
84 |
f_out = gr.File(interactive=False, label="Download")
|
85 |
-
|
86 |
-
examples = [["transformation", 3], ["climate_change", 3], ["risk, political_risk, uncertainty", 5]],
|
87 |
-
inputs = [text_in, n],
|
88 |
-
outputs = [df_out, f_out, text_in],
|
89 |
-
fn = semantic_search,
|
90 |
-
cache_examples=True
|
91 |
-
)
|
92 |
gr.Markdown(
|
93 |
"""
|
94 |
<p style="text-align: center;">
|
|
|
68 |
The model allows for two use cases:
|
69 |
1. *Single Search:* The input query consists of a single word. When provided a bi-, tri-, or even fourgram, the quality of the model output depends on the presence of the query token in the model's vocabulary. N-grams should be concated by an underscore (e.g., "machine_learning" or "artifical_intelligence").
|
70 |
2. *Multi Search:* The input query may consist of several words or n-grams, seperated by comma, semi-colon or newline. It then computes the average vector over all inputs and performs semantic search based on the average input token.
|
|
|
|
|
|
|
|
|
|
|
71 |
"""
|
72 |
)
|
73 |
+
gr.Examples(
|
74 |
+
examples = [
|
75 |
+
["transformation", 20],
|
76 |
+
["climate_change", 50],
|
77 |
+
["risk, political_risk, uncertainty", 250],
|
78 |
+
],
|
79 |
+
inputs = [text_in, n],
|
80 |
+
outputs = [df_out, f_out, text_in],
|
81 |
+
fn = semantic_search,
|
82 |
+
cache_examples=True
|
83 |
+
)
|
84 |
with gr.Column():
|
85 |
text_in = gr.Textbox(lines=1, placeholder="Insert text", label="Search Query")
|
86 |
with gr.Row():
|
|
|
88 |
compute_bt = gr.Button("Search")
|
89 |
df_out = gr.Dataframe(interactive=False)
|
90 |
f_out = gr.File(interactive=False, label="Download")
|
91 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
gr.Markdown(
|
93 |
"""
|
94 |
<p style="text-align: center;">
|