Spaces:
Running
Running
import asyncio | |
import datetime | |
import logging | |
import os | |
import time | |
import traceback | |
import edge_tts | |
import gradio as gr | |
import librosa | |
import torch | |
from fairseq import checkpoint_utils | |
from config import Config | |
from lib.infer_pack.models import ( | |
SynthesizerTrnMs256NSFsid, | |
SynthesizerTrnMs256NSFsid_nono, | |
SynthesizerTrnMs768NSFsid, | |
SynthesizerTrnMs768NSFsid_nono, | |
) | |
from rmvpe import RMVPE | |
from vc_infer_pipeline import VC | |
logging.getLogger("fairseq").setLevel(logging.WARNING) | |
logging.getLogger("numba").setLevel(logging.WARNING) | |
logging.getLogger("markdown_it").setLevel(logging.WARNING) | |
logging.getLogger("urllib3").setLevel(logging.WARNING) | |
logging.getLogger("matplotlib").setLevel(logging.WARNING) | |
limitation = os.getenv("SYSTEM") == "spaces" | |
config = Config() | |
edge_output_filename = "edge_output.mp3" | |
tts_voice_list = asyncio.get_event_loop().run_until_complete(edge_tts.list_voices()) | |
tts_voices = [f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list] | |
model_root = "weights" | |
models = [ | |
d for d in os.listdir(model_root) if os.path.isdir(os.path.join(model_root, d)) | |
] | |
if len(models) == 0: | |
raise ValueError("No model found in `weights` folder") | |
models.sort() | |
def model_data(model_name): | |
# global n_spk, tgt_sr, net_g, vc, cpt, version, index_file | |
pth_files = [ | |
os.path.join(model_root, model_name, f) | |
for f in os.listdir(os.path.join(model_root, model_name)) | |
if f.endswith(".pth") | |
] | |
if len(pth_files) == 0: | |
raise ValueError(f"No pth file found in {model_root}/{model_name}") | |
pth_path = pth_files[0] | |
print(f"Loading {pth_path}") | |
cpt = torch.load(pth_path, map_location="cpu") | |
tgt_sr = cpt["config"][-1] | |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk | |
if_f0 = cpt.get("f0", 1) | |
version = cpt.get("version", "v1") | |
if version == "v1": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half) | |
else: | |
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
elif version == "v2": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half) | |
else: | |
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
else: | |
raise ValueError("Unknown version") | |
del net_g.enc_q | |
net_g.load_state_dict(cpt["weight"], strict=False) | |
print("Model loaded") | |
net_g.eval().to(config.device) | |
if config.is_half: | |
net_g = net_g.half() | |
else: | |
net_g = net_g.float() | |
vc = VC(tgt_sr, config) | |
# n_spk = cpt["config"][-3] | |
index_files = [ | |
os.path.join(model_root, model_name, f) | |
for f in os.listdir(os.path.join(model_root, model_name)) | |
if f.endswith(".index") | |
] | |
if len(index_files) == 0: | |
print("No index file found") | |
index_file = "" | |
else: | |
index_file = index_files[0] | |
print(f"Index file found: {index_file}") | |
return tgt_sr, net_g, vc, version, index_file, if_f0 | |
def load_hubert(): | |
global hubert_model | |
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( | |
["hubert_base.pt"], | |
suffix="", | |
) | |
hubert_model = models[0] | |
hubert_model = hubert_model.to(config.device) | |
if config.is_half: | |
hubert_model = hubert_model.half() | |
else: | |
hubert_model = hubert_model.float() | |
return hubert_model.eval() | |
print("Loading hubert model...") | |
hubert_model = load_hubert() | |
print("Hubert model loaded.") | |
print("Loading rmvpe model...") | |
rmvpe_model = RMVPE("rmvpe.pt", config.is_half, config.device) | |
print("rmvpe model loaded.") | |
def tts( | |
model_name, | |
speed, | |
tts_text, | |
tts_voice, | |
f0_up_key, | |
f0_method, | |
index_rate, | |
protect, | |
filter_radius=3, | |
resample_sr=0, | |
rms_mix_rate=0.25, | |
): | |
print("------------------") | |
print(datetime.datetime.now()) | |
print("tts_text:") | |
print(tts_text) | |
print(f"tts_voice: {tts_voice}") | |
print(f"Model name: {model_name}") | |
print(f"F0: {f0_method}, Key: {f0_up_key}, Index: {index_rate}, Protect: {protect}") | |
try: | |
if limitation and len(tts_text) > 280: | |
print("Error: Text too long") | |
return ( | |
f"Text characters should be at most 280 in this huggingface space, but got {len(tts_text)} characters.", | |
None, | |
None, | |
) | |
tgt_sr, net_g, vc, version, index_file, if_f0 = model_data(model_name) | |
t0 = time.time() | |
if speed >= 0: | |
speed_str = f"+{speed}%" | |
else: | |
speed_str = f"{speed}%" | |
asyncio.run( | |
edge_tts.Communicate( | |
tts_text, "-".join(tts_voice.split("-")[:-1]), rate=speed_str | |
).save(edge_output_filename) | |
) | |
t1 = time.time() | |
edge_time = t1 - t0 | |
audio, sr = librosa.load(edge_output_filename, sr=16000, mono=True) | |
duration = len(audio) / sr | |
print(f"Audio duration: {duration}s") | |
if limitation and duration >= 20: | |
print("Error: Audio too long") | |
return ( | |
f"Audio should be less than 20 seconds in this huggingface space, but got {duration}s.", | |
edge_output_filename, | |
None, | |
) | |
f0_up_key = int(f0_up_key) | |
if not hubert_model: | |
load_hubert() | |
if f0_method == "rmvpe": | |
vc.model_rmvpe = rmvpe_model | |
times = [0, 0, 0] | |
audio_opt = vc.pipeline( | |
hubert_model, | |
net_g, | |
0, | |
audio, | |
edge_output_filename, | |
times, | |
f0_up_key, | |
f0_method, | |
index_file, | |
# file_big_npy, | |
index_rate, | |
if_f0, | |
filter_radius, | |
tgt_sr, | |
resample_sr, | |
rms_mix_rate, | |
version, | |
protect, | |
None, | |
) | |
if tgt_sr != resample_sr >= 16000: | |
tgt_sr = resample_sr | |
info = f"Success. Time: edge-tts: {edge_time}s, npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s" | |
print(info) | |
return ( | |
info, | |
edge_output_filename, | |
(tgt_sr, audio_opt), | |
) | |
except EOFError: | |
info = ( | |
"It seems that the edge-tts output is not valid. " | |
"This may occur when the input text and the speaker do not match. " | |
"For example, maybe you entered Japanese (without alphabets) text but chose non-Japanese speaker?" | |
) | |
print(info) | |
return info, None, None | |
except: | |
info = traceback.format_exc() | |
print(info) | |
return info, None, None | |
initial_md = """ | |
# RVC text-to-speech webui | |
This is a text-to-speech webui of RVC models. | |
Input text ➡[(edge-tts)](https://github.com/rany2/edge-tts)➡ Speech mp3 file ➡[(RVC)](https://github.com/RVC-Project/Retrieval-based-Voice-Conversion-WebUI)➡ Final output | |
""" | |
app = gr.Blocks() | |
with app: | |
gr.Markdown(initial_md) | |
with gr.Row(): | |
with gr.Column(): | |
model_name = gr.Dropdown(label="Model", choices=models, value=models[0]) | |
f0_key_up = gr.Number( | |
label="Transpose (the best value depends on the models and speakers)", | |
value=0, | |
) | |
with gr.Column(): | |
f0_method = gr.Radio( | |
label="Pitch extraction method (pm: very fast, low quality, rmvpe: a little slow, high quality)", | |
choices=["pm", "rmvpe"], # harvest and crepe is too slow | |
value="rmvpe", | |
interactive=True, | |
) | |
index_rate = gr.Slider( | |
minimum=0, | |
maximum=1, | |
label="Index rate", | |
value=1, | |
interactive=True, | |
) | |
protect0 = gr.Slider( | |
minimum=0, | |
maximum=0.5, | |
label="Protect", | |
value=0.33, | |
step=0.01, | |
interactive=True, | |
) | |
with gr.Row(): | |
with gr.Column(): | |
tts_voice = gr.Dropdown( | |
label="Edge-tts speaker (format: language-Country-Name-Gender)", | |
choices=tts_voices, | |
allow_custom_value=False, | |
value="ja-JP-NanamiNeural-Female", | |
) | |
speed = gr.Slider( | |
minimum=-100, | |
maximum=100, | |
label="Speech speed (%)", | |
value=0, | |
step=10, | |
interactive=True, | |
) | |
tts_text = gr.Textbox(label="Input Text", value="これは日本語テキストから音声への変換デモです。") | |
with gr.Column(): | |
but0 = gr.Button("Convert", variant="primary") | |
info_text = gr.Textbox(label="Output info") | |
with gr.Column(): | |
edge_tts_output = gr.Audio(label="Edge Voice", type="filepath") | |
tts_output = gr.Audio(label="Result") | |
but0.click( | |
tts, | |
[ | |
model_name, | |
speed, | |
tts_text, | |
tts_voice, | |
f0_key_up, | |
f0_method, | |
index_rate, | |
protect0, | |
], | |
[info_text, edge_tts_output, tts_output], | |
) | |
with gr.Row(): | |
examples = gr.Examples( | |
examples_per_page=100, | |
examples=[ | |
["これは日本語テキストから音声への変換デモです。", "ja-JP-NanamiNeural-Female"], | |
[ | |
"This is an English text to speech conversation demo.", | |
"en-US-AriaNeural-Female", | |
], | |
["这是一个中文文本到语音的转换演示。", "zh-CN-XiaoxiaoNeural-Female"], | |
["한국어 텍스트에서 음성으로 변환하는 데모입니다.", "ko-KR-SunHiNeural-Female"], | |
[ | |
"Il s'agit d'une démo de conversion du texte français à la parole.", | |
"fr-FR-DeniseNeural-Female", | |
], | |
[ | |
"Dies ist eine Demo zur Umwandlung von Deutsch in Sprache.", | |
"de-DE-AmalaNeural-Female", | |
], | |
[ | |
"Tämä on suomenkielinen tekstistä puheeksi -esittely.", | |
"fi-FI-NooraNeural-Female", | |
], | |
[ | |
"Это демонстрационный пример преобразования русского текста в речь.", | |
"ru-RU-SvetlanaNeural-Female", | |
], | |
[ | |
"Αυτή είναι μια επίδειξη μετατροπής ελληνικού κειμένου σε ομιλία.", | |
"el-GR-AthinaNeural-Female", | |
], | |
[ | |
"Esta es una demostración de conversión de texto a voz en español.", | |
"es-ES-ElviraNeural-Female", | |
], | |
[ | |
"Questa è una dimostrazione di sintesi vocale in italiano.", | |
"it-IT-ElsaNeural-Female", | |
], | |
[ | |
"Esta é uma demonstração de conversão de texto em fala em português.", | |
"pt-PT-RaquelNeural-Female", | |
], | |
[ | |
"Це демонстрація тексту до мовлення українською мовою.", | |
"uk-UA-PolinaNeural-Female", | |
], | |
[ | |
"هذا عرض توضيحي عربي لتحويل النص إلى كلام.", | |
"ar-EG-SalmaNeural-Female", | |
], | |
[ | |
"இது தமிழ் உரையிலிருந்து பேச்சு மாற்ற டெமோ.", | |
"ta-IN-PallaviNeural-Female", | |
], | |
], | |
inputs=[tts_text, tts_voice], | |
) | |
app.launch(inbrowser=True) | |