Spaces:
Sleeping
Sleeping
File size: 5,036 Bytes
d2ecfeb 9b5b26a c19d193 d2ecfeb 6aae614 8fe992b 9b5b26a d2ecfeb 3b24e8f 9b5b26a 3b24e8f 9b5b26a 3b24e8f 290d7e9 9b5b26a 290d7e9 9b5b26a 8c01ffb 3b24e8f d2ecfeb 3b24e8f d2ecfeb 3b24e8f d2ecfeb 3b24e8f d2ecfeb 3b24e8f d2ecfeb 290d7e9 3b24e8f d2ecfeb 3b24e8f d2ecfeb 3b24e8f d2ecfeb 3b24e8f d2ecfeb 3b24e8f d2ecfeb 3b24e8f d2ecfeb 3b24e8f d2ecfeb 3b24e8f 8c01ffb 6aae614 e121372 d2ecfeb 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b d2ecfeb 8c01ffb 861422e 8fe992b 3b24e8f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool
import datetime
import requests
import pytz
import yaml
import os
from tools.final_answer import FinalAnswerTool
from Gradio_UI import GradioUI
@tool
def my_cutom_tool(arg1: str, arg2: int) -> str:
"""A tool that does nothing yet.
Args:
arg1: the first argument.
arg2: the second argument.
Returns:
A placeholder string.
"""
return "What magic will you build ?"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""Fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
Returns:
A string stating the current local time in the specified timezone.
"""
try:
tz = pytz.timezone(timezone)
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
# --- Helper function to fetch Spotify access token ---
def fetch_spotify_access_token() -> str:
"""
Retrieves an access token from Spotify using the Client Credentials Flow.
Returns:
A string containing the access token, or None if the request fails.
"""
url = "https://accounts.spotify.com/api/token"
headers = {"Content-Type": "application/x-www-form-urlencoded"}
data = {
"grant_type": "client_credentials",
"client_id": os.getenv("SPOTIFY_CLIENT_ID"),
"client_secret": os.getenv("SPOTIFY_CLIENT_SECRET")
}
response = requests.post(url, headers=headers, data=data)
if response.status_code == 200:
return response.json().get("access_token")
return None
# --- Mood Mapping Dictionary ---
# This dictionary maps mood words to Spotify recommendation parameters.
MOOD_MAPPING = {
"happy": {"target_valence": 0.9, "target_energy": 0.8, "seed_genres": ["pop"]},
"sad": {"target_valence": 0.2, "target_energy": 0.3, "seed_genres": ["acoustic"]},
"energetic": {"target_valence": 0.7, "target_energy": 0.9, "seed_genres": ["work-out"]},
"chill": {"target_valence": 0.6, "target_energy": 0.4, "seed_genres": ["chill"]}
}
@tool
def get_songs_by_mood(mood: str) -> str:
"""Fetches a playlist of songs based on a given mood using Spotify's Recommendations API.
Args:
mood: A string representing the desired mood (e.g., "happy", "sad", "energetic", "chill").
Returns:
A string containing a list of recommended songs, each on a new line in the format:
'Track Name - Artist Name'.
The function uses an internal mapping to convert the mood word into target parameters
(valence, energy) and a seed genre, then calls the Spotify Recommendations endpoint.
"""
# Retrieve Spotify access token
access_token = fetch_spotify_access_token()
if not access_token:
return "Error: Unable to retrieve Spotify access token."
# Get mapping for the specified mood; use default if not found
mapping = MOOD_MAPPING.get(mood.lower(), {"target_valence": 0.5, "target_energy": 0.5, "seed_genres": ["pop"]})
# Build parameters for the Spotify Recommendations API request
params = {
"seed_genres": ",".join(mapping["seed_genres"]),
"target_valence": mapping["target_valence"],
"target_energy": mapping["target_energy"],
"limit": 10
}
url = "https://api.spotify.com/v1/recommendations"
headers = {"Authorization": f"Bearer {access_token}"}
response = requests.get(url, headers=headers, params=params)
if response.status_code == 200:
tracks = response.json().get("tracks", [])
if not tracks:
return "No tracks found for the specified mood."
playlist = []
for track in tracks:
track_name = track.get("name")
artist_name = track.get("artists", [{}])[0].get("name", "Unknown")
playlist.append(f"{track_name} - {artist_name}")
return "\n".join(playlist)
else:
return f"Error: {response.json()}"
final_answer = FinalAnswerTool()
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='https://wxknx1kg971u7k1n.us-east-1.aws.endpoints.huggingface.cloud',
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[
final_answer,
my_cutom_tool,
get_current_time_in_timezone,
get_songs_by_mood
],
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch()
|