import streamlit as st import numpy as np import pandas as pd from datasets import load_dataset st.set_page_config(layout="wide") col1, col2 = st.columns([2, 3]) # Adjust the width ratio as needed sources = [ "https://huggingface.co/datasets/cfahlgren1/hub-stats", "https://huggingface.co/datasets/maxiw/hf-posts", ] with col1: st.header("HuggingFace đ¤ Posts leaderboard") with col2: selected_source = st.selectbox( "Data Source:", options=sources, index=0, ) if selected_source == sources[0]: try: df = pd.read_parquet("hf://datasets/cfahlgren1/hub-stats/posts.parquet") # ds = load_dataset("cfahlgren1/hub-stats", "posts") # df = pd.DataFrame(ds['train']).info() df["Name"] = df.fullname df["username"] = df.name except Exception as exp: st.error(f''' ERROR>> in loading {selected_source} >> {exp}''', icon="đ¨") selected_source = sources[1] st.info(f''' This can be solved by "Space Restart" Switching Sources for now... New Source: {selected_source}''', icon="âšī¸") if selected_source == sources[1]: df = pd.read_json("hf://datasets/maxiw/hf-posts/posts.jsonl", lines=True) df["publishedAt"] = pd.to_datetime(df.publishedAt) print(">>> ", df.columns) df["Name"] = df.author.apply(lambda x: x["fullname"]) df["username"] = df.author.apply(lambda x: x["name"]) # Define the metrics metrics = ["totalUniqueImpressions", "totalReactions", "numComments", "Num of posts"] # Get min and max dates from the DataFrame min_date = df["publishedAt"].min().to_pydatetime() max_date = df["publishedAt"].max().to_pydatetime() # Create columns for the slider and the selectbox col1, col2 = st.columns([3, 1]) # Adjust the width ratio as needed with col1: date_range = st.slider( "Select Date Range", min_value=min_date, max_value=max_date, value=(min_date, max_date), format="DD/MMM/YYYY", ) with col2: selected_metric = st.selectbox( "Sort by:", options=metrics, index=0, ) # Filter the DataFrame based on selected date range mask = df["publishedAt"].between(*date_range) df = df[mask] df["totalReactions"] = df.reactions.apply(lambda x: sum([_["count"] for _ in x])) df["Num of posts"] = 1 # Ensure metrics columns are integers, handling NaN values df[metrics] = df[metrics].fillna(0).astype(int) data = ( df.groupby(["username", "Name"])[metrics] .sum() .sort_values(selected_metric, ascending=False) .reset_index() ) data.index = np.arange(1, len(data) + 1) data.index.name = "Rank" # Format metrics columns with commas data[metrics] = data[metrics].applymap(lambda x: f"{x:,}") def make_clickable(val): return f'{val}' df_styled = data.style.format({"username": make_clickable}) st.write( f"""