Matteo Sirri
fix: fix typo
3c48cfa
import os.path as osp
import os
import gradio as gr
import torch
import logging
import torchvision
from torchvision.models.detection.faster_rcnn import fasterrcnn_resnet50_fpn
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from src.detection.graph_utils import add_bbox
from src.detection.vision import presets
import torchvision.transforms as T
logging.getLogger('PIL').setLevel(logging.CRITICAL)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_model(baseline: bool = False):
if baseline:
path = osp.join(os.getcwd(), "model_baseline_coco_FT_MOT17.pth")
else:
path = osp.join(os.getcwd(), "model_split3_FT_MOT17.pth")
model = fasterrcnn_resnet50_fpn()
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 2)
checkpoint = torch.load(path, map_location="cpu")
model.load_state_dict(checkpoint["model"])
model.to(device)
model.eval()
return model
def frcnn_motsynth(image):
model = load_model()
transformEval = presets.DetectionPresetEval()
image_tensor = transformEval(image, None)[0]
image_tensor = image_tensor.to(device)
prediction = model([image_tensor])[0]
image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
torchvision.io.write_png(image_w_bbox, "custom_out.png")
return "custom_out.png"
def frcnn_coco(image):
model = load_model(baseline=True)
transformEval = presets.DetectionPresetEval()
image_tensor = transformEval(image, None)[0]
image_tensor = image_tensor.to(device)
prediction = model([image_tensor])[0]
image_w_bbox = add_bbox(image_tensor, prediction, 0.80)
torchvision.io.write_png(image_w_bbox, "baseline_out.png")
return "baseline_out.png"
title = "Domain adaption on pedestrian detection with Faster R-CNN"
description = '<p style="text-align:center">School in AI: Deep Learning, Vision and Language for Industry - second edition final project work by Matteo Sirri.</p> '
examples = ["001.jpg", "003.jpg", "005.jpg"]
io_baseline = gr.Interface(frcnn_coco, gr.Image(type="pil"), gr.Image(
type="file", size=(1920,1080), label="Baseline Model trained on COCO + FT on MOT17"))
io_custom = gr.Interface(frcnn_motsynth, gr.Image(type="pil"), gr.Image(
type="file", size=(1920,1080), label="Faster R-CNN trained on MOTSynth + FT on MOT17"))
gr.Parallel(io_baseline, io_custom, title=title,
description=description, examples=examples).launch(enable_queue=True)