Spaces:
Build error
Build error
import os.path as osp | |
import os | |
import gradio as gr | |
import torch | |
import logging | |
import torchvision | |
from torchvision.models.detection.faster_rcnn import fasterrcnn_resnet50_fpn | |
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor | |
from src.detection.graph_utils import add_bbox | |
from src.detection.vision import presets | |
import torchvision.transforms as T | |
logging.getLogger('PIL').setLevel(logging.CRITICAL) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def load_model(baseline: bool = False): | |
if baseline: | |
path = osp.join(os.getcwd(), "model_baseline_coco_FT_MOT17.pth") | |
else: | |
path = osp.join(os.getcwd(), "model_split3_FT_MOT17.pth") | |
model = fasterrcnn_resnet50_fpn() | |
in_features = model.roi_heads.box_predictor.cls_score.in_features | |
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, 2) | |
checkpoint = torch.load(path, map_location="cpu") | |
model.load_state_dict(checkpoint["model"]) | |
model.to(device) | |
model.eval() | |
return model | |
def frcnn_motsynth(image): | |
model = load_model() | |
transformEval = presets.DetectionPresetEval() | |
image_tensor = transformEval(image, None)[0] | |
image_tensor = image_tensor.to(device) | |
prediction = model([image_tensor])[0] | |
image_w_bbox = add_bbox(image_tensor, prediction, 0.80) | |
torchvision.io.write_png(image_w_bbox, "custom_out.png") | |
return "custom_out.png" | |
def frcnn_coco(image): | |
model = load_model(baseline=True) | |
transformEval = presets.DetectionPresetEval() | |
image_tensor = transformEval(image, None)[0] | |
image_tensor = image_tensor.to(device) | |
prediction = model([image_tensor])[0] | |
image_w_bbox = add_bbox(image_tensor, prediction, 0.80) | |
torchvision.io.write_png(image_w_bbox, "baseline_out.png") | |
return "baseline_out.png" | |
title = "Domain adaption on pedestrian detection with Faster R-CNN" | |
description = '<p style="text-align:center">School in AI: Deep Learning, Vision and Language for Industry - second edition final project work by Matteo Sirri.</p> ' | |
examples = ["001.jpg", "003.jpg", "005.jpg"] | |
io_baseline = gr.Interface(frcnn_coco, gr.Image(type="pil"), gr.Image( | |
type="file", size=(1920,1080), label="Baseline Model trained on COCO + FT on MOT17")) | |
io_custom = gr.Interface(frcnn_motsynth, gr.Image(type="pil"), gr.Image( | |
type="file", size=(1920,1080), label="Faster R-CNN trained on MOTSynth + FT on MOT17")) | |
gr.Parallel(io_baseline, io_custom, title=title, | |
description=description, examples=examples).launch(enable_queue=True) | |