|
|
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
|
|
import gradio as gr |
|
from depth_estimation import process_image |
|
|
|
|
|
|
|
image = gr.Image(type="pil", label="Image") |
|
|
|
|
|
answer = gr.Image(type="pil", label="Depth Map") |
|
|
|
|
|
examples = [ |
|
["images/cat.jpg"], |
|
["images/dog.jpg"], |
|
["images/bird.jpg"], |
|
] |
|
|
|
|
|
title = "Zero Shot Depth Estimation" |
|
description = "Gradio Demo for the Intel/DPT Beit-Large-512 Depth Estimation model. This model can estimate the depth of objects in images. To use it, upload your photo and click 'submit', or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2307.14460' target='_blank'>MiDaS v3.1 – A Model Zoo for Robust Monocular Relative Depth Estimation</a> | <a href='https://huggingface.co/Intel/dpt-beit-large-512' target='_blank'>Model Page</a></p>" |
|
|
|
|
|
|
|
interface = gr.Interface( |
|
fn=process_image, |
|
inputs=[image], |
|
outputs=answer, |
|
examples=examples, |
|
cache_examples="lazy", |
|
title=title, |
|
description=description, |
|
article=article, |
|
theme="Soft", |
|
allow_flagging="never", |
|
) |
|
interface.launch(debug=False) |
|
|