|
|
|
import gradio as gr |
|
from model import answer_question |
|
|
|
|
|
|
|
image = gr.Image(type="pil", label="Image") |
|
question = gr.Textbox(label="Question") |
|
|
|
|
|
answer = gr.Textbox(label="Predicted answer", show_label=True, show_copy_button=True) |
|
|
|
|
|
examples = [ |
|
["images/cat.jpg", "How many cats are there?"], |
|
["images/dog.jpg", "¿De qué color es el perro?"], |
|
["images/bird.jpg", "Que fait l'oiseau ?"], |
|
] |
|
|
|
|
|
title = "Visual Question Answering" |
|
description = "Gradio Demo for the MiniCPM Llama3 Vision Language Understanding and Generation model. This model can answer questions about images in natural language. To use it, simply upload your image and type a question and click 'submit', or click one of the examples to load them. Read more at the links below." |
|
article = "<p style='text-align: center'><a href='https://github.com/OpenBMB/MiniCPM-V' target='_blank'>Model GitHub Repo</a> | <a href='https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5' target='_blank'>Model Page</a></p>" |
|
|
|
|
|
|
|
interface = gr.Interface( |
|
fn=answer_question, |
|
inputs=[image, question], |
|
outputs=answer, |
|
examples=examples, |
|
title=title, |
|
description=description, |
|
article=article, |
|
theme="Soft", |
|
allow_flagging="never", |
|
) |
|
interface.launch(debug=False) |
|
|