File size: 4,024 Bytes
5d6c1fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
from langchain_anthropic import ChatAnthropic
from langchain_openai import ChatOpenAI
from langchain_ollama import ChatOllama
from langchain_core.language_models.base import BaseLanguageModel
from langchain_core.messages import BaseMessage, HumanMessage, AIMessage
from typing import Optional, Dict, List, Any
import os
import requests
import json
from dotenv import load_dotenv
from dataclasses import dataclass
load_dotenv()
@dataclass
class GeminiResponse:
content: str
class GeminiProvider:
def __init__(self, api_key: str):
self.api_key = api_key
self.base_url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash:generateContent"
def chat(self, messages: List[Dict[str, Any]]) -> GeminiResponse:
# Convert messages to Gemini format
gemini_messages = []
for msg in messages:
# Handle both dict and LangChain message objects
if isinstance(msg, BaseMessage):
role = "user" if isinstance(msg, HumanMessage) else "model"
content = msg.content
else:
role = "user" if msg["role"] == "human" else "model"
content = msg["content"]
gemini_messages.append({
"role": role,
"parts": [{"text": content}]
})
# Prepare the request
headers = {
"Content-Type": "application/json"
}
params = {
"key": self.api_key
}
data = {
"contents": gemini_messages,
"generationConfig": {
"temperature": 0.7,
"topP": 0.8,
"topK": 40,
"maxOutputTokens": 2048,
}
}
try:
response = requests.post(
self.base_url,
headers=headers,
params=params,
json=data,
)
response.raise_for_status()
result = response.json()
if "candidates" in result and len(result["candidates"]) > 0:
return GeminiResponse(content=result["candidates"][0]["content"]["parts"][0]["text"])
else:
raise Exception("No response generated")
except Exception as e:
raise Exception(f"Error calling Gemini API: {str(e)}")
def invoke(self, messages: List[BaseMessage], **kwargs) -> GeminiResponse:
return self.chat(messages)
def generate(self, prompts, **kwargs) -> GeminiResponse:
if isinstance(prompts, str):
return self.invoke([HumanMessage(content=prompts)])
elif isinstance(prompts, list):
return self.invoke([HumanMessage(content=prompts[0])])
raise ValueError("Unsupported prompt format")
class LLMProvider:
def __init__(self):
self.providers: Dict[str, Any] = {}
self._setup_providers()
def _setup_providers(self):
# Google Gemini
if google_key := os.getenv('GOOGLE_API_KEY'):
self.providers['Gemini'] = GeminiProvider(api_key=google_key)
# Anthropic
if anthropic_key := os.getenv('ANTHROPIC_API_KEY'):
self.providers['Claude'] = ChatAnthropic(
api_key=anthropic_key,
model_name="claude-3-5-sonnet-20241022",
)
# OpenAI
if openai_key := os.getenv('OPENAI_API_KEY'):
self.providers['ChatGPT'] = ChatOpenAI(
api_key=openai_key,
model_name="gpt-4o-2024-11-20"
)
def get_available_providers(self) -> list[str]:
"""Return list of available provider names"""
return list(self.providers.keys())
def get_provider(self, name: str) -> Optional[Any]:
"""Get LLM provider by name"""
return self.providers.get(name)
|