Spaces:
Running
Running
Update chat_gemini.py
Browse files- chat_gemini.py +262 -263
chat_gemini.py
CHANGED
@@ -1,264 +1,263 @@
|
|
1 |
-
import json
|
2 |
-
from random import choices
|
3 |
-
import string
|
4 |
-
from langchain.tools import BaseTool
|
5 |
-
import requests
|
6 |
-
from dotenv import load_dotenv
|
7 |
-
from dataclasses import dataclass
|
8 |
-
from langchain_core.language_models.chat_models import BaseChatModel
|
9 |
-
from typing import (
|
10 |
-
Any,
|
11 |
-
Callable,
|
12 |
-
Dict,
|
13 |
-
List,
|
14 |
-
Literal,
|
15 |
-
Mapping,
|
16 |
-
Optional,
|
17 |
-
Sequence,
|
18 |
-
Type,
|
19 |
-
Union,
|
20 |
-
cast,
|
21 |
-
)
|
22 |
-
from langchain_core.callbacks import (
|
23 |
-
CallbackManagerForLLMRun,
|
24 |
-
)
|
25 |
-
from langchain_core.callbacks.manager import AsyncCallbackManagerForLLMRun
|
26 |
-
from langchain_core.exceptions import OutputParserException
|
27 |
-
from langchain_core.language_models import LanguageModelInput
|
28 |
-
from langchain_core.language_models.chat_models import BaseChatModel, LangSmithParams
|
29 |
-
from langchain_core.messages import (
|
30 |
-
AIMessage,
|
31 |
-
BaseMessage,
|
32 |
-
HumanMessage,
|
33 |
-
ToolMessage,
|
34 |
-
SystemMessage,
|
35 |
-
)
|
36 |
-
from langchain_core.outputs import ChatGeneration, ChatResult
|
37 |
-
from langchain_core.runnables import Runnable
|
38 |
-
from langchain_core.tools import BaseTool
|
39 |
-
|
40 |
-
|
41 |
-
class ChatGemini(BaseChatModel):
|
42 |
-
|
43 |
-
@property
|
44 |
-
def _llm_type(self) -> str:
|
45 |
-
"""Get the type of language model used by this chat model."""
|
46 |
-
return "gemini"
|
47 |
-
|
48 |
-
api_key :str
|
49 |
-
base_url:str = "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash-exp:generateContent"
|
50 |
-
model_kwargs: Any = {}
|
51 |
-
|
52 |
-
def _generate(
|
53 |
-
self,
|
54 |
-
messages: list[BaseMessage],
|
55 |
-
stop: Optional[list[str]] = None,
|
56 |
-
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
57 |
-
**kwargs: Any,
|
58 |
-
) -> ChatResult:
|
59 |
-
"""Generate a chat response using the Gemini API.
|
60 |
-
|
61 |
-
This method handles both regular text responses and function calls.
|
62 |
-
For function calls, it returns a ToolMessage with structured function call data
|
63 |
-
that can be processed by Langchain's agent executor.
|
64 |
-
|
65 |
-
Function calls are returned with:
|
66 |
-
- tool_name: The name of the function to call
|
67 |
-
- tool_call_id: A unique identifier for the function call (name is used as Gemini doesn't provide one)
|
68 |
-
- content: The function arguments as a JSON string
|
69 |
-
- additional_kwargs: Contains the full function call details
|
70 |
-
|
71 |
-
Args:
|
72 |
-
messages: List of input messages
|
73 |
-
stop: Optional list of stop sequences
|
74 |
-
run_manager: Optional callback manager
|
75 |
-
**kwargs: Additional arguments passed to the Gemini API
|
76 |
-
|
77 |
-
Returns:
|
78 |
-
ChatResult containing either an AIMessage for text responses
|
79 |
-
or a ToolMessage for function calls
|
80 |
-
"""
|
81 |
-
# Convert messages to Gemini format
|
82 |
-
gemini_messages = []
|
83 |
-
system_message = None
|
84 |
-
for msg in messages:
|
85 |
-
# Handle both dict and LangChain message objects
|
86 |
-
if isinstance(msg, BaseMessage):
|
87 |
-
if isinstance(msg, SystemMessage):
|
88 |
-
system_message = msg.content
|
89 |
-
kwargs["system_instruction"]= {"parts":[{"text": system_message}]}
|
90 |
-
continue
|
91 |
-
if isinstance(msg, HumanMessage):
|
92 |
-
role = "user"
|
93 |
-
content = msg.content
|
94 |
-
elif isinstance(msg, AIMessage):
|
95 |
-
role = "model"
|
96 |
-
content = msg.content
|
97 |
-
elif isinstance(msg, ToolMessage):
|
98 |
-
# Handle tool messages by adding them as function outputs
|
99 |
-
gemini_messages.append(
|
100 |
-
{
|
101 |
-
"role": "model",
|
102 |
-
"parts": [{
|
103 |
-
"functionResponse": {
|
104 |
-
"name": msg.name,
|
105 |
-
"response": {"name": msg.name, "content": msg.content},
|
106 |
-
}}]}
|
107 |
-
)
|
108 |
-
continue
|
109 |
-
else:
|
110 |
-
role = "user" if msg["role"] == "human" else "model"
|
111 |
-
content = msg["content"]
|
112 |
-
|
113 |
-
message_part = {
|
114 |
-
"role": role,
|
115 |
-
"parts":[{"functionCall": { "name": msg.tool_calls[0]["name"], "args": msg.tool_calls[0]["args"]}}] if isinstance(msg, AIMessage) and msg.tool_calls else [{"text": content}]
|
116 |
-
}
|
117 |
-
gemini_messages.append(message_part)
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
# Prepare the request
|
122 |
-
headers = {
|
123 |
-
"Content-Type": "application/json"
|
124 |
-
}
|
125 |
-
|
126 |
-
params = {
|
127 |
-
"key": self.api_key
|
128 |
-
}
|
129 |
-
|
130 |
-
data = {
|
131 |
-
"contents": gemini_messages,
|
132 |
-
"generationConfig": {
|
133 |
-
"temperature": 0.7,
|
134 |
-
"topP": 0.8,
|
135 |
-
"topK": 40,
|
136 |
-
"maxOutputTokens": 2048,
|
137 |
-
},
|
138 |
-
**kwargs
|
139 |
-
}
|
140 |
-
|
141 |
-
|
142 |
-
try:
|
143 |
-
response = requests.post(
|
144 |
-
self.base_url,
|
145 |
-
headers=headers,
|
146 |
-
params=params,
|
147 |
-
json=data,
|
148 |
-
|
149 |
-
)
|
150 |
-
|
151 |
-
|
152 |
-
result
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
"
|
164 |
-
"
|
165 |
-
"
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
"
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
"
|
247 |
-
"
|
248 |
-
|
249 |
-
"
|
250 |
-
"
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
return ''.join(choices(string.ascii_letters + string.digits, k=length))
|
264 |
|
|
|
1 |
+
import json
|
2 |
+
from random import choices
|
3 |
+
import string
|
4 |
+
from langchain.tools import BaseTool
|
5 |
+
import requests
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from langchain_core.language_models.chat_models import BaseChatModel
|
9 |
+
from typing import (
|
10 |
+
Any,
|
11 |
+
Callable,
|
12 |
+
Dict,
|
13 |
+
List,
|
14 |
+
Literal,
|
15 |
+
Mapping,
|
16 |
+
Optional,
|
17 |
+
Sequence,
|
18 |
+
Type,
|
19 |
+
Union,
|
20 |
+
cast,
|
21 |
+
)
|
22 |
+
from langchain_core.callbacks import (
|
23 |
+
CallbackManagerForLLMRun,
|
24 |
+
)
|
25 |
+
from langchain_core.callbacks.manager import AsyncCallbackManagerForLLMRun
|
26 |
+
from langchain_core.exceptions import OutputParserException
|
27 |
+
from langchain_core.language_models import LanguageModelInput
|
28 |
+
from langchain_core.language_models.chat_models import BaseChatModel, LangSmithParams
|
29 |
+
from langchain_core.messages import (
|
30 |
+
AIMessage,
|
31 |
+
BaseMessage,
|
32 |
+
HumanMessage,
|
33 |
+
ToolMessage,
|
34 |
+
SystemMessage,
|
35 |
+
)
|
36 |
+
from langchain_core.outputs import ChatGeneration, ChatResult
|
37 |
+
from langchain_core.runnables import Runnable
|
38 |
+
from langchain_core.tools import BaseTool
|
39 |
+
|
40 |
+
|
41 |
+
class ChatGemini(BaseChatModel):
|
42 |
+
|
43 |
+
@property
|
44 |
+
def _llm_type(self) -> str:
|
45 |
+
"""Get the type of language model used by this chat model."""
|
46 |
+
return "gemini"
|
47 |
+
|
48 |
+
api_key :str
|
49 |
+
base_url:str = "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.0-flash-exp:generateContent"
|
50 |
+
model_kwargs: Any = {}
|
51 |
+
|
52 |
+
def _generate(
|
53 |
+
self,
|
54 |
+
messages: list[BaseMessage],
|
55 |
+
stop: Optional[list[str]] = None,
|
56 |
+
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
57 |
+
**kwargs: Any,
|
58 |
+
) -> ChatResult:
|
59 |
+
"""Generate a chat response using the Gemini API.
|
60 |
+
|
61 |
+
This method handles both regular text responses and function calls.
|
62 |
+
For function calls, it returns a ToolMessage with structured function call data
|
63 |
+
that can be processed by Langchain's agent executor.
|
64 |
+
|
65 |
+
Function calls are returned with:
|
66 |
+
- tool_name: The name of the function to call
|
67 |
+
- tool_call_id: A unique identifier for the function call (name is used as Gemini doesn't provide one)
|
68 |
+
- content: The function arguments as a JSON string
|
69 |
+
- additional_kwargs: Contains the full function call details
|
70 |
+
|
71 |
+
Args:
|
72 |
+
messages: List of input messages
|
73 |
+
stop: Optional list of stop sequences
|
74 |
+
run_manager: Optional callback manager
|
75 |
+
**kwargs: Additional arguments passed to the Gemini API
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
ChatResult containing either an AIMessage for text responses
|
79 |
+
or a ToolMessage for function calls
|
80 |
+
"""
|
81 |
+
# Convert messages to Gemini format
|
82 |
+
gemini_messages = []
|
83 |
+
system_message = None
|
84 |
+
for msg in messages:
|
85 |
+
# Handle both dict and LangChain message objects
|
86 |
+
if isinstance(msg, BaseMessage):
|
87 |
+
if isinstance(msg, SystemMessage):
|
88 |
+
system_message = msg.content
|
89 |
+
kwargs["system_instruction"]= {"parts":[{"text": system_message}]}
|
90 |
+
continue
|
91 |
+
if isinstance(msg, HumanMessage):
|
92 |
+
role = "user"
|
93 |
+
content = msg.content
|
94 |
+
elif isinstance(msg, AIMessage):
|
95 |
+
role = "model"
|
96 |
+
content = msg.content
|
97 |
+
elif isinstance(msg, ToolMessage):
|
98 |
+
# Handle tool messages by adding them as function outputs
|
99 |
+
gemini_messages.append(
|
100 |
+
{
|
101 |
+
"role": "model",
|
102 |
+
"parts": [{
|
103 |
+
"functionResponse": {
|
104 |
+
"name": msg.name,
|
105 |
+
"response": {"name": msg.name, "content": msg.content},
|
106 |
+
}}]}
|
107 |
+
)
|
108 |
+
continue
|
109 |
+
else:
|
110 |
+
role = "user" if msg["role"] == "human" else "model"
|
111 |
+
content = msg["content"]
|
112 |
+
|
113 |
+
message_part = {
|
114 |
+
"role": role,
|
115 |
+
"parts":[{"functionCall": { "name": msg.tool_calls[0]["name"], "args": msg.tool_calls[0]["args"]}}] if isinstance(msg, AIMessage) and msg.tool_calls else [{"text": content}]
|
116 |
+
}
|
117 |
+
gemini_messages.append(message_part)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
# Prepare the request
|
122 |
+
headers = {
|
123 |
+
"Content-Type": "application/json"
|
124 |
+
}
|
125 |
+
|
126 |
+
params = {
|
127 |
+
"key": self.api_key
|
128 |
+
}
|
129 |
+
|
130 |
+
data = {
|
131 |
+
"contents": gemini_messages,
|
132 |
+
"generationConfig": {
|
133 |
+
"temperature": 0.7,
|
134 |
+
"topP": 0.8,
|
135 |
+
"topK": 40,
|
136 |
+
"maxOutputTokens": 2048,
|
137 |
+
},
|
138 |
+
**kwargs
|
139 |
+
}
|
140 |
+
|
141 |
+
|
142 |
+
try:
|
143 |
+
response = requests.post(
|
144 |
+
self.base_url,
|
145 |
+
headers=headers,
|
146 |
+
params=params,
|
147 |
+
json=data,
|
148 |
+
)
|
149 |
+
response.raise_for_status()
|
150 |
+
|
151 |
+
result = response.json()
|
152 |
+
if "candidates" in result and len(result["candidates"]) > 0 and "parts" in result["candidates"][0]["content"]:
|
153 |
+
parts = result["candidates"][0]["content"]["parts"]
|
154 |
+
tool_calls = []
|
155 |
+
content = ""
|
156 |
+
for part in parts:
|
157 |
+
if "text" in part:
|
158 |
+
content += part["text"]
|
159 |
+
if "functionCall" in part:
|
160 |
+
function_call = part["functionCall"]
|
161 |
+
tool_calls.append( {
|
162 |
+
"name": function_call["name"],
|
163 |
+
"id": function_call["name"]+random_string(5), # Gemini doesn't provide a unique id,}
|
164 |
+
"args": function_call["args"],
|
165 |
+
"type": "tool_call",})
|
166 |
+
# Create a proper ToolMessage with structured function call data
|
167 |
+
return ChatResult(generations=[
|
168 |
+
ChatGeneration(
|
169 |
+
message=AIMessage(
|
170 |
+
content=content,
|
171 |
+
tool_calls=tool_calls,
|
172 |
+
) if len(tool_calls) > 0 else AIMessage(content=content)
|
173 |
+
)
|
174 |
+
])
|
175 |
+
|
176 |
+
|
177 |
+
else:
|
178 |
+
raise Exception("No response generated")
|
179 |
+
|
180 |
+
except Exception as e:
|
181 |
+
raise Exception(f"Error calling Gemini API: {str(e)}")
|
182 |
+
|
183 |
+
|
184 |
+
def bind_tools(
|
185 |
+
self,
|
186 |
+
tools: Sequence[Union[Dict[str, Any], Type, Callable, BaseTool]],
|
187 |
+
*,
|
188 |
+
tool_choice: Optional[Union[dict, str, Literal["auto", "any"], bool]] = None,
|
189 |
+
**kwargs: Any,
|
190 |
+
) -> Runnable[LanguageModelInput, BaseMessage]:
|
191 |
+
"""Bind tool-like objects to this chat model.
|
192 |
+
|
193 |
+
|
194 |
+
Args:
|
195 |
+
tools: A list of tool definitions to bind to this chat model.
|
196 |
+
Supports any tool definition handled by
|
197 |
+
:meth:`langchain_core.utils.function_calling.convert_to_openai_tool`.
|
198 |
+
tool_choice: If provided, which tool for model to call. **This parameter
|
199 |
+
is currently ignored as it is not supported by Ollama.**
|
200 |
+
kwargs: Any additional parameters are passed directly to
|
201 |
+
``self.bind(**kwargs)``.
|
202 |
+
"""
|
203 |
+
|
204 |
+
formatted_tools = {"function_declarations": [convert_to_gemini_tool(tool) for tool in tools]}
|
205 |
+
return super().bind(tools=formatted_tools, **kwargs)
|
206 |
+
|
207 |
+
def convert_to_gemini_tool(
|
208 |
+
tool: Union[BaseTool],
|
209 |
+
*,
|
210 |
+
strict: Optional[bool] = None,
|
211 |
+
) -> dict[str, Any]:
|
212 |
+
"""Convert a tool-like object to an Gemini tool schema.
|
213 |
+
|
214 |
+
Gemini tool schema reference:
|
215 |
+
https://ai.google.dev/gemini-api/docs/function-calling#function_calling_mode
|
216 |
+
|
217 |
+
Args:
|
218 |
+
tool:
|
219 |
+
BaseTool.
|
220 |
+
strict:
|
221 |
+
If True, model output is guaranteed to exactly match the JSON Schema
|
222 |
+
provided in the function definition. If None, ``strict`` argument will not
|
223 |
+
be included in tool definition.
|
224 |
+
|
225 |
+
Returns:
|
226 |
+
A dict version of the passed in tool which is compatible with the
|
227 |
+
Gemini tool-calling API.
|
228 |
+
"""
|
229 |
+
if isinstance(tool, BaseTool):
|
230 |
+
# Extract the tool's schema
|
231 |
+
schema = tool.args_schema.schema() if tool.args_schema else {"type": "object", "properties": {}}
|
232 |
+
|
233 |
+
#convert to gemini schema
|
234 |
+
raw_properties = schema.get("properties", {})
|
235 |
+
properties = {}
|
236 |
+
for key, value in raw_properties.items():
|
237 |
+
properties[key] = {
|
238 |
+
"type": value.get("type", "string"),
|
239 |
+
"description": value.get("title", ""),
|
240 |
+
}
|
241 |
+
|
242 |
+
|
243 |
+
# Build the function definition
|
244 |
+
function_def = {
|
245 |
+
"name": tool.name,
|
246 |
+
"description": tool.description,
|
247 |
+
"parameters": {
|
248 |
+
"type": "object",
|
249 |
+
"properties": properties,
|
250 |
+
"required": schema.get("required", [])
|
251 |
+
}
|
252 |
+
}
|
253 |
+
|
254 |
+
if strict is not None:
|
255 |
+
function_def["strict"] = strict
|
256 |
+
|
257 |
+
return function_def
|
258 |
+
else:
|
259 |
+
raise ValueError(f"Unsupported tool type: {type(tool)}")
|
260 |
+
|
261 |
+
def random_string(length: int) -> str:
|
262 |
+
return ''.join(choices(string.ascii_letters + string.digits, k=length))
|
|
|
263 |
|