Spaces:
Runtime error
Runtime error
from contextlib import asynccontextmanager | |
from bs4 import BeautifulSoup | |
import json | |
import markdown | |
import time | |
import os | |
import sys | |
import logging | |
import aiohttp | |
import requests | |
import mimetypes | |
import shutil | |
import os | |
import asyncio | |
from fastapi import FastAPI, Request, Depends, status, UploadFile, File, Form | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.responses import JSONResponse | |
from fastapi import HTTPException | |
from fastapi.middleware.wsgi import WSGIMiddleware | |
from fastapi.middleware.cors import CORSMiddleware | |
from starlette.exceptions import HTTPException as StarletteHTTPException | |
from starlette.middleware.base import BaseHTTPMiddleware | |
from starlette.responses import StreamingResponse, Response | |
from apps.socket.main import app as socket_app | |
from apps.ollama.main import ( | |
app as ollama_app, | |
OpenAIChatCompletionForm, | |
get_all_models as get_ollama_models, | |
generate_openai_chat_completion as generate_ollama_chat_completion, | |
) | |
from apps.openai.main import ( | |
app as openai_app, | |
get_all_models as get_openai_models, | |
generate_chat_completion as generate_openai_chat_completion, | |
) | |
from apps.audio.main import app as audio_app | |
from apps.images.main import app as images_app | |
from apps.rag.main import app as rag_app | |
from apps.webui.main import app as webui_app | |
from pydantic import BaseModel | |
from typing import List, Optional | |
from apps.webui.models.models import Models, ModelModel | |
from utils.utils import ( | |
get_admin_user, | |
get_verified_user, | |
get_current_user, | |
get_http_authorization_cred, | |
) | |
from utils.task import title_generation_template, search_query_generation_template | |
from apps.rag.utils import rag_messages | |
from config import ( | |
CONFIG_DATA, | |
WEBUI_NAME, | |
WEBUI_URL, | |
WEBUI_AUTH, | |
ENV, | |
VERSION, | |
CHANGELOG, | |
FRONTEND_BUILD_DIR, | |
CACHE_DIR, | |
STATIC_DIR, | |
ENABLE_OPENAI_API, | |
ENABLE_OLLAMA_API, | |
ENABLE_MODEL_FILTER, | |
MODEL_FILTER_LIST, | |
GLOBAL_LOG_LEVEL, | |
SRC_LOG_LEVELS, | |
WEBHOOK_URL, | |
ENABLE_ADMIN_EXPORT, | |
WEBUI_BUILD_HASH, | |
TASK_MODEL, | |
TASK_MODEL_EXTERNAL, | |
TITLE_GENERATION_PROMPT_TEMPLATE, | |
SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE, | |
SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD, | |
AppConfig, | |
) | |
from constants import ERROR_MESSAGES | |
logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL) | |
log = logging.getLogger(__name__) | |
log.setLevel(SRC_LOG_LEVELS["MAIN"]) | |
class SPAStaticFiles(StaticFiles): | |
async def get_response(self, path: str, scope): | |
try: | |
return await super().get_response(path, scope) | |
except (HTTPException, StarletteHTTPException) as ex: | |
if ex.status_code == 404: | |
return await super().get_response("index.html", scope) | |
else: | |
raise ex | |
print( | |
rf""" | |
___ __ __ _ _ _ ___ | |
/ _ \ _ __ ___ _ __ \ \ / /__| |__ | | | |_ _| | |
| | | | '_ \ / _ \ '_ \ \ \ /\ / / _ \ '_ \| | | || | | |
| |_| | |_) | __/ | | | \ V V / __/ |_) | |_| || | | |
\___/| .__/ \___|_| |_| \_/\_/ \___|_.__/ \___/|___| | |
|_| | |
v{VERSION} - building the best open-source AI user interface. | |
{f"Commit: {WEBUI_BUILD_HASH}" if WEBUI_BUILD_HASH != "dev-build" else ""} | |
https://github.com/open-webui/open-webui | |
""" | |
) | |
async def lifespan(app: FastAPI): | |
yield | |
app = FastAPI( | |
docs_url="/docs" if ENV == "dev" else None, redoc_url=None, lifespan=lifespan | |
) | |
app.state.config = AppConfig() | |
app.state.config.ENABLE_OPENAI_API = ENABLE_OPENAI_API | |
app.state.config.ENABLE_OLLAMA_API = ENABLE_OLLAMA_API | |
app.state.config.ENABLE_MODEL_FILTER = ENABLE_MODEL_FILTER | |
app.state.config.MODEL_FILTER_LIST = MODEL_FILTER_LIST | |
app.state.config.WEBHOOK_URL = WEBHOOK_URL | |
app.state.config.TASK_MODEL = TASK_MODEL | |
app.state.config.TASK_MODEL_EXTERNAL = TASK_MODEL_EXTERNAL | |
app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = TITLE_GENERATION_PROMPT_TEMPLATE | |
app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE = ( | |
SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE | |
) | |
app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD = ( | |
SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD | |
) | |
app.state.MODELS = {} | |
origins = ["*"] | |
# Custom middleware to add security headers | |
# class SecurityHeadersMiddleware(BaseHTTPMiddleware): | |
# async def dispatch(self, request: Request, call_next): | |
# response: Response = await call_next(request) | |
# response.headers["Cross-Origin-Opener-Policy"] = "same-origin" | |
# response.headers["Cross-Origin-Embedder-Policy"] = "require-corp" | |
# return response | |
# app.add_middleware(SecurityHeadersMiddleware) | |
class RAGMiddleware(BaseHTTPMiddleware): | |
async def dispatch(self, request: Request, call_next): | |
return_citations = False | |
if request.method == "POST" and ( | |
"/ollama/api/chat" in request.url.path | |
or "/chat/completions" in request.url.path | |
): | |
log.debug(f"request.url.path: {request.url.path}") | |
# Read the original request body | |
body = await request.body() | |
# Decode body to string | |
body_str = body.decode("utf-8") | |
# Parse string to JSON | |
data = json.loads(body_str) if body_str else {} | |
return_citations = data.get("citations", False) | |
if "citations" in data: | |
del data["citations"] | |
# Example: Add a new key-value pair or modify existing ones | |
# data["modified"] = True # Example modification | |
if "docs" in data: | |
data = {**data} | |
data["messages"], citations = rag_messages( | |
docs=data["docs"], | |
messages=data["messages"], | |
template=rag_app.state.config.RAG_TEMPLATE, | |
embedding_function=rag_app.state.EMBEDDING_FUNCTION, | |
k=rag_app.state.config.TOP_K, | |
reranking_function=rag_app.state.sentence_transformer_rf, | |
r=rag_app.state.config.RELEVANCE_THRESHOLD, | |
hybrid_search=rag_app.state.config.ENABLE_RAG_HYBRID_SEARCH, | |
) | |
del data["docs"] | |
log.debug( | |
f"data['messages']: {data['messages']}, citations: {citations}" | |
) | |
modified_body_bytes = json.dumps(data).encode("utf-8") | |
# Replace the request body with the modified one | |
request._body = modified_body_bytes | |
# Set custom header to ensure content-length matches new body length | |
request.headers.__dict__["_list"] = [ | |
(b"content-length", str(len(modified_body_bytes)).encode("utf-8")), | |
*[ | |
(k, v) | |
for k, v in request.headers.raw | |
if k.lower() != b"content-length" | |
], | |
] | |
response = await call_next(request) | |
if return_citations: | |
# Inject the citations into the response | |
if isinstance(response, StreamingResponse): | |
# If it's a streaming response, inject it as SSE event or NDJSON line | |
content_type = response.headers.get("Content-Type") | |
if "text/event-stream" in content_type: | |
return StreamingResponse( | |
self.openai_stream_wrapper(response.body_iterator, citations), | |
) | |
if "application/x-ndjson" in content_type: | |
return StreamingResponse( | |
self.ollama_stream_wrapper(response.body_iterator, citations), | |
) | |
return response | |
async def _receive(self, body: bytes): | |
return {"type": "http.request", "body": body, "more_body": False} | |
async def openai_stream_wrapper(self, original_generator, citations): | |
yield f"data: {json.dumps({'citations': citations})}\n\n" | |
async for data in original_generator: | |
yield data | |
async def ollama_stream_wrapper(self, original_generator, citations): | |
yield f"{json.dumps({'citations': citations})}\n" | |
async for data in original_generator: | |
yield data | |
app.add_middleware(RAGMiddleware) | |
def filter_pipeline(payload, user): | |
user = {"id": user.id, "name": user.name, "role": user.role} | |
model_id = payload["model"] | |
filters = [ | |
model | |
for model in app.state.MODELS.values() | |
if "pipeline" in model | |
and "type" in model["pipeline"] | |
and model["pipeline"]["type"] == "filter" | |
and ( | |
model["pipeline"]["pipelines"] == ["*"] | |
or any( | |
model_id == target_model_id | |
for target_model_id in model["pipeline"]["pipelines"] | |
) | |
) | |
] | |
sorted_filters = sorted(filters, key=lambda x: x["pipeline"]["priority"]) | |
model = app.state.MODELS[model_id] | |
if "pipeline" in model: | |
sorted_filters.append(model) | |
for filter in sorted_filters: | |
r = None | |
try: | |
urlIdx = filter["urlIdx"] | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
if key != "": | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.post( | |
f"{url}/{filter['id']}/filter/inlet", | |
headers=headers, | |
json={ | |
"user": user, | |
"body": payload, | |
}, | |
) | |
r.raise_for_status() | |
payload = r.json() | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
return JSONResponse( | |
status_code=r.status_code, | |
content=res, | |
) | |
except: | |
pass | |
else: | |
pass | |
if "pipeline" not in app.state.MODELS[model_id]: | |
if "chat_id" in payload: | |
del payload["chat_id"] | |
if "title" in payload: | |
del payload["title"] | |
return payload | |
class PipelineMiddleware(BaseHTTPMiddleware): | |
async def dispatch(self, request: Request, call_next): | |
if request.method == "POST" and ( | |
"/ollama/api/chat" in request.url.path | |
or "/chat/completions" in request.url.path | |
): | |
log.debug(f"request.url.path: {request.url.path}") | |
# Read the original request body | |
body = await request.body() | |
# Decode body to string | |
body_str = body.decode("utf-8") | |
# Parse string to JSON | |
data = json.loads(body_str) if body_str else {} | |
user = get_current_user( | |
get_http_authorization_cred(request.headers.get("Authorization")) | |
) | |
data = filter_pipeline(data, user) | |
modified_body_bytes = json.dumps(data).encode("utf-8") | |
# Replace the request body with the modified one | |
request._body = modified_body_bytes | |
# Set custom header to ensure content-length matches new body length | |
request.headers.__dict__["_list"] = [ | |
(b"content-length", str(len(modified_body_bytes)).encode("utf-8")), | |
*[ | |
(k, v) | |
for k, v in request.headers.raw | |
if k.lower() != b"content-length" | |
], | |
] | |
response = await call_next(request) | |
return response | |
async def _receive(self, body: bytes): | |
return {"type": "http.request", "body": body, "more_body": False} | |
app.add_middleware(PipelineMiddleware) | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=origins, | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
async def check_url(request: Request, call_next): | |
if len(app.state.MODELS) == 0: | |
await get_all_models() | |
else: | |
pass | |
start_time = int(time.time()) | |
response = await call_next(request) | |
process_time = int(time.time()) - start_time | |
response.headers["X-Process-Time"] = str(process_time) | |
return response | |
async def update_embedding_function(request: Request, call_next): | |
response = await call_next(request) | |
if "/embedding/update" in request.url.path: | |
webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION | |
return response | |
app.mount("/ws", socket_app) | |
app.mount("/ollama", ollama_app) | |
app.mount("/openai", openai_app) | |
app.mount("/images/api/v1", images_app) | |
app.mount("/audio/api/v1", audio_app) | |
app.mount("/rag/api/v1", rag_app) | |
app.mount("/api/v1", webui_app) | |
webui_app.state.EMBEDDING_FUNCTION = rag_app.state.EMBEDDING_FUNCTION | |
async def get_all_models(): | |
openai_models = [] | |
ollama_models = [] | |
if app.state.config.ENABLE_OPENAI_API: | |
openai_models = await get_openai_models() | |
openai_models = openai_models["data"] | |
if app.state.config.ENABLE_OLLAMA_API: | |
ollama_models = await get_ollama_models() | |
ollama_models = [ | |
{ | |
"id": model["model"], | |
"name": model["name"], | |
"object": "model", | |
"created": int(time.time()), | |
"owned_by": "ollama", | |
"ollama": model, | |
} | |
for model in ollama_models["models"] | |
] | |
models = openai_models + ollama_models | |
custom_models = Models.get_all_models() | |
for custom_model in custom_models: | |
if custom_model.base_model_id == None: | |
for model in models: | |
if ( | |
custom_model.id == model["id"] | |
or custom_model.id == model["id"].split(":")[0] | |
): | |
model["name"] = custom_model.name | |
model["info"] = custom_model.model_dump() | |
else: | |
owned_by = "openai" | |
for model in models: | |
if ( | |
custom_model.base_model_id == model["id"] | |
or custom_model.base_model_id == model["id"].split(":")[0] | |
): | |
owned_by = model["owned_by"] | |
break | |
models.append( | |
{ | |
"id": custom_model.id, | |
"name": custom_model.name, | |
"object": "model", | |
"created": custom_model.created_at, | |
"owned_by": owned_by, | |
"info": custom_model.model_dump(), | |
"preset": True, | |
} | |
) | |
app.state.MODELS = {model["id"]: model for model in models} | |
webui_app.state.MODELS = app.state.MODELS | |
return models | |
async def get_models(user=Depends(get_verified_user)): | |
models = await get_all_models() | |
# Filter out filter pipelines | |
models = [ | |
model | |
for model in models | |
if "pipeline" not in model or model["pipeline"].get("type", None) != "filter" | |
] | |
if app.state.config.ENABLE_MODEL_FILTER: | |
if user.role == "user": | |
models = list( | |
filter( | |
lambda model: model["id"] in app.state.config.MODEL_FILTER_LIST, | |
models, | |
) | |
) | |
return {"data": models} | |
return {"data": models} | |
async def get_task_config(user=Depends(get_verified_user)): | |
return { | |
"TASK_MODEL": app.state.config.TASK_MODEL, | |
"TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL, | |
"TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE, | |
"SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE, | |
"SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD": app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD, | |
} | |
class TaskConfigForm(BaseModel): | |
TASK_MODEL: Optional[str] | |
TASK_MODEL_EXTERNAL: Optional[str] | |
TITLE_GENERATION_PROMPT_TEMPLATE: str | |
SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE: str | |
SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD: int | |
async def update_task_config(form_data: TaskConfigForm, user=Depends(get_admin_user)): | |
app.state.config.TASK_MODEL = form_data.TASK_MODEL | |
app.state.config.TASK_MODEL_EXTERNAL = form_data.TASK_MODEL_EXTERNAL | |
app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE = ( | |
form_data.TITLE_GENERATION_PROMPT_TEMPLATE | |
) | |
app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE = ( | |
form_data.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE | |
) | |
app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD = ( | |
form_data.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD | |
) | |
return { | |
"TASK_MODEL": app.state.config.TASK_MODEL, | |
"TASK_MODEL_EXTERNAL": app.state.config.TASK_MODEL_EXTERNAL, | |
"TITLE_GENERATION_PROMPT_TEMPLATE": app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE, | |
"SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE": app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE, | |
"SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD": app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD, | |
} | |
async def generate_title(form_data: dict, user=Depends(get_verified_user)): | |
print("generate_title") | |
model_id = form_data["model"] | |
if model_id not in app.state.MODELS: | |
raise HTTPException( | |
status_code=status.HTTP_404_NOT_FOUND, | |
detail="Model not found", | |
) | |
# Check if the user has a custom task model | |
# If the user has a custom task model, use that model | |
if app.state.MODELS[model_id]["owned_by"] == "ollama": | |
if app.state.config.TASK_MODEL: | |
task_model_id = app.state.config.TASK_MODEL | |
if task_model_id in app.state.MODELS: | |
model_id = task_model_id | |
else: | |
if app.state.config.TASK_MODEL_EXTERNAL: | |
task_model_id = app.state.config.TASK_MODEL_EXTERNAL | |
if task_model_id in app.state.MODELS: | |
model_id = task_model_id | |
print(model_id) | |
model = app.state.MODELS[model_id] | |
template = app.state.config.TITLE_GENERATION_PROMPT_TEMPLATE | |
content = title_generation_template( | |
template, form_data["prompt"], user.model_dump() | |
) | |
payload = { | |
"model": model_id, | |
"messages": [{"role": "user", "content": content}], | |
"stream": False, | |
"max_tokens": 50, | |
"chat_id": form_data.get("chat_id", None), | |
"title": True, | |
} | |
print(payload) | |
payload = filter_pipeline(payload, user) | |
if model["owned_by"] == "ollama": | |
return await generate_ollama_chat_completion( | |
OpenAIChatCompletionForm(**payload), user=user | |
) | |
else: | |
return await generate_openai_chat_completion(payload, user=user) | |
async def generate_search_query(form_data: dict, user=Depends(get_verified_user)): | |
print("generate_search_query") | |
if len(form_data["prompt"]) < app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD: | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail=f"Skip search query generation for short prompts (< {app.state.config.SEARCH_QUERY_PROMPT_LENGTH_THRESHOLD} characters)", | |
) | |
model_id = form_data["model"] | |
if model_id not in app.state.MODELS: | |
raise HTTPException( | |
status_code=status.HTTP_404_NOT_FOUND, | |
detail="Model not found", | |
) | |
# Check if the user has a custom task model | |
# If the user has a custom task model, use that model | |
if app.state.MODELS[model_id]["owned_by"] == "ollama": | |
if app.state.config.TASK_MODEL: | |
task_model_id = app.state.config.TASK_MODEL | |
if task_model_id in app.state.MODELS: | |
model_id = task_model_id | |
else: | |
if app.state.config.TASK_MODEL_EXTERNAL: | |
task_model_id = app.state.config.TASK_MODEL_EXTERNAL | |
if task_model_id in app.state.MODELS: | |
model_id = task_model_id | |
print(model_id) | |
model = app.state.MODELS[model_id] | |
template = app.state.config.SEARCH_QUERY_GENERATION_PROMPT_TEMPLATE | |
content = search_query_generation_template( | |
template, form_data["prompt"], user.model_dump() | |
) | |
payload = { | |
"model": model_id, | |
"messages": [{"role": "user", "content": content}], | |
"stream": False, | |
"max_tokens": 30, | |
} | |
print(payload) | |
payload = filter_pipeline(payload, user) | |
if model["owned_by"] == "ollama": | |
return await generate_ollama_chat_completion( | |
OpenAIChatCompletionForm(**payload), user=user | |
) | |
else: | |
return await generate_openai_chat_completion(payload, user=user) | |
async def generate_chat_completions(form_data: dict, user=Depends(get_verified_user)): | |
model_id = form_data["model"] | |
if model_id not in app.state.MODELS: | |
raise HTTPException( | |
status_code=status.HTTP_404_NOT_FOUND, | |
detail="Model not found", | |
) | |
model = app.state.MODELS[model_id] | |
print(model) | |
if model["owned_by"] == "ollama": | |
return await generate_ollama_chat_completion( | |
OpenAIChatCompletionForm(**form_data), user=user | |
) | |
else: | |
return await generate_openai_chat_completion(form_data, user=user) | |
async def chat_completed(form_data: dict, user=Depends(get_verified_user)): | |
data = form_data | |
model_id = data["model"] | |
filters = [ | |
model | |
for model in app.state.MODELS.values() | |
if "pipeline" in model | |
and "type" in model["pipeline"] | |
and model["pipeline"]["type"] == "filter" | |
and ( | |
model["pipeline"]["pipelines"] == ["*"] | |
or any( | |
model_id == target_model_id | |
for target_model_id in model["pipeline"]["pipelines"] | |
) | |
) | |
] | |
sorted_filters = sorted(filters, key=lambda x: x["pipeline"]["priority"]) | |
print(model_id) | |
if model_id in app.state.MODELS: | |
model = app.state.MODELS[model_id] | |
if "pipeline" in model: | |
sorted_filters = [model] + sorted_filters | |
for filter in sorted_filters: | |
r = None | |
try: | |
urlIdx = filter["urlIdx"] | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
if key != "": | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.post( | |
f"{url}/{filter['id']}/filter/outlet", | |
headers=headers, | |
json={ | |
"user": {"id": user.id, "name": user.name, "role": user.role}, | |
"body": data, | |
}, | |
) | |
r.raise_for_status() | |
data = r.json() | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
return JSONResponse( | |
status_code=r.status_code, | |
content=res, | |
) | |
except: | |
pass | |
else: | |
pass | |
return data | |
async def get_pipelines_list(user=Depends(get_admin_user)): | |
responses = await get_openai_models(raw=True) | |
print(responses) | |
urlIdxs = [ | |
idx | |
for idx, response in enumerate(responses) | |
if response != None and "pipelines" in response | |
] | |
return { | |
"data": [ | |
{ | |
"url": openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx], | |
"idx": urlIdx, | |
} | |
for urlIdx in urlIdxs | |
] | |
} | |
async def upload_pipeline( | |
urlIdx: int = Form(...), file: UploadFile = File(...), user=Depends(get_admin_user) | |
): | |
print("upload_pipeline", urlIdx, file.filename) | |
# Check if the uploaded file is a python file | |
if not file.filename.endswith(".py"): | |
raise HTTPException( | |
status_code=status.HTTP_400_BAD_REQUEST, | |
detail="Only Python (.py) files are allowed.", | |
) | |
upload_folder = f"{CACHE_DIR}/pipelines" | |
os.makedirs(upload_folder, exist_ok=True) | |
file_path = os.path.join(upload_folder, file.filename) | |
try: | |
# Save the uploaded file | |
with open(file_path, "wb") as buffer: | |
shutil.copyfileobj(file.file, buffer) | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
headers = {"Authorization": f"Bearer {key}"} | |
with open(file_path, "rb") as f: | |
files = {"file": f} | |
r = requests.post(f"{url}/pipelines/upload", headers=headers, files=files) | |
r.raise_for_status() | |
data = r.json() | |
return {**data} | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
detail = "Pipeline not found" | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
detail = res["detail"] | |
except: | |
pass | |
raise HTTPException( | |
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), | |
detail=detail, | |
) | |
finally: | |
# Ensure the file is deleted after the upload is completed or on failure | |
if os.path.exists(file_path): | |
os.remove(file_path) | |
class AddPipelineForm(BaseModel): | |
url: str | |
urlIdx: int | |
async def add_pipeline(form_data: AddPipelineForm, user=Depends(get_admin_user)): | |
r = None | |
try: | |
urlIdx = form_data.urlIdx | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.post( | |
f"{url}/pipelines/add", headers=headers, json={"url": form_data.url} | |
) | |
r.raise_for_status() | |
data = r.json() | |
return {**data} | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
detail = "Pipeline not found" | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
detail = res["detail"] | |
except: | |
pass | |
raise HTTPException( | |
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), | |
detail=detail, | |
) | |
class DeletePipelineForm(BaseModel): | |
id: str | |
urlIdx: int | |
async def delete_pipeline(form_data: DeletePipelineForm, user=Depends(get_admin_user)): | |
r = None | |
try: | |
urlIdx = form_data.urlIdx | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.delete( | |
f"{url}/pipelines/delete", headers=headers, json={"id": form_data.id} | |
) | |
r.raise_for_status() | |
data = r.json() | |
return {**data} | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
detail = "Pipeline not found" | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
detail = res["detail"] | |
except: | |
pass | |
raise HTTPException( | |
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), | |
detail=detail, | |
) | |
async def get_pipelines(urlIdx: Optional[int] = None, user=Depends(get_admin_user)): | |
r = None | |
try: | |
urlIdx | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.get(f"{url}/pipelines", headers=headers) | |
r.raise_for_status() | |
data = r.json() | |
return {**data} | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
detail = "Pipeline not found" | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
detail = res["detail"] | |
except: | |
pass | |
raise HTTPException( | |
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), | |
detail=detail, | |
) | |
async def get_pipeline_valves( | |
urlIdx: Optional[int], pipeline_id: str, user=Depends(get_admin_user) | |
): | |
models = await get_all_models() | |
r = None | |
try: | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.get(f"{url}/{pipeline_id}/valves", headers=headers) | |
r.raise_for_status() | |
data = r.json() | |
return {**data} | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
detail = "Pipeline not found" | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
detail = res["detail"] | |
except: | |
pass | |
raise HTTPException( | |
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), | |
detail=detail, | |
) | |
async def get_pipeline_valves_spec( | |
urlIdx: Optional[int], pipeline_id: str, user=Depends(get_admin_user) | |
): | |
models = await get_all_models() | |
r = None | |
try: | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.get(f"{url}/{pipeline_id}/valves/spec", headers=headers) | |
r.raise_for_status() | |
data = r.json() | |
return {**data} | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
detail = "Pipeline not found" | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
detail = res["detail"] | |
except: | |
pass | |
raise HTTPException( | |
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), | |
detail=detail, | |
) | |
async def update_pipeline_valves( | |
urlIdx: Optional[int], | |
pipeline_id: str, | |
form_data: dict, | |
user=Depends(get_admin_user), | |
): | |
models = await get_all_models() | |
r = None | |
try: | |
url = openai_app.state.config.OPENAI_API_BASE_URLS[urlIdx] | |
key = openai_app.state.config.OPENAI_API_KEYS[urlIdx] | |
headers = {"Authorization": f"Bearer {key}"} | |
r = requests.post( | |
f"{url}/{pipeline_id}/valves/update", | |
headers=headers, | |
json={**form_data}, | |
) | |
r.raise_for_status() | |
data = r.json() | |
return {**data} | |
except Exception as e: | |
# Handle connection error here | |
print(f"Connection error: {e}") | |
detail = "Pipeline not found" | |
if r is not None: | |
try: | |
res = r.json() | |
if "detail" in res: | |
detail = res["detail"] | |
except: | |
pass | |
raise HTTPException( | |
status_code=(r.status_code if r is not None else status.HTTP_404_NOT_FOUND), | |
detail=detail, | |
) | |
async def get_app_config(): | |
# Checking and Handling the Absence of 'ui' in CONFIG_DATA | |
default_locale = "en-US" | |
if "ui" in CONFIG_DATA: | |
default_locale = CONFIG_DATA["ui"].get("default_locale", "en-US") | |
# The Rest of the Function Now Uses the Variables Defined Above | |
return { | |
"status": True, | |
"name": WEBUI_NAME, | |
"version": VERSION, | |
"default_locale": default_locale, | |
"default_models": webui_app.state.config.DEFAULT_MODELS, | |
"default_prompt_suggestions": webui_app.state.config.DEFAULT_PROMPT_SUGGESTIONS, | |
"features": { | |
"auth": WEBUI_AUTH, | |
"auth_trusted_header": bool(webui_app.state.AUTH_TRUSTED_EMAIL_HEADER), | |
"enable_signup": webui_app.state.config.ENABLE_SIGNUP, | |
"enable_web_search": rag_app.state.config.ENABLE_RAG_WEB_SEARCH, | |
"enable_image_generation": images_app.state.config.ENABLED, | |
"enable_community_sharing": webui_app.state.config.ENABLE_COMMUNITY_SHARING, | |
"enable_admin_export": ENABLE_ADMIN_EXPORT, | |
}, | |
"audio": { | |
"tts": { | |
"engine": audio_app.state.config.TTS_ENGINE, | |
"voice": audio_app.state.config.TTS_VOICE, | |
}, | |
"stt": { | |
"engine": audio_app.state.config.STT_ENGINE, | |
}, | |
}, | |
} | |
async def get_model_filter_config(user=Depends(get_admin_user)): | |
return { | |
"enabled": app.state.config.ENABLE_MODEL_FILTER, | |
"models": app.state.config.MODEL_FILTER_LIST, | |
} | |
class ModelFilterConfigForm(BaseModel): | |
enabled: bool | |
models: List[str] | |
async def update_model_filter_config( | |
form_data: ModelFilterConfigForm, user=Depends(get_admin_user) | |
): | |
app.state.config.ENABLE_MODEL_FILTER = form_data.enabled | |
app.state.config.MODEL_FILTER_LIST = form_data.models | |
return { | |
"enabled": app.state.config.ENABLE_MODEL_FILTER, | |
"models": app.state.config.MODEL_FILTER_LIST, | |
} | |
async def get_webhook_url(user=Depends(get_admin_user)): | |
return { | |
"url": app.state.config.WEBHOOK_URL, | |
} | |
class UrlForm(BaseModel): | |
url: str | |
async def update_webhook_url(form_data: UrlForm, user=Depends(get_admin_user)): | |
app.state.config.WEBHOOK_URL = form_data.url | |
webui_app.state.WEBHOOK_URL = app.state.config.WEBHOOK_URL | |
return {"url": app.state.config.WEBHOOK_URL} | |
async def get_app_config(): | |
return { | |
"version": VERSION, | |
} | |
async def get_app_changelog(): | |
return {key: CHANGELOG[key] for idx, key in enumerate(CHANGELOG) if idx < 5} | |
async def get_app_latest_release_version(): | |
try: | |
async with aiohttp.ClientSession(trust_env=True) as session: | |
async with session.get( | |
"https://api.github.com/repos/open-webui/open-webui/releases/latest" | |
) as response: | |
response.raise_for_status() | |
data = await response.json() | |
latest_version = data["tag_name"] | |
return {"current": VERSION, "latest": latest_version[1:]} | |
except aiohttp.ClientError as e: | |
raise HTTPException( | |
status_code=status.HTTP_503_SERVICE_UNAVAILABLE, | |
detail=ERROR_MESSAGES.RATE_LIMIT_EXCEEDED, | |
) | |
async def get_manifest_json(): | |
return { | |
"name": WEBUI_NAME, | |
"short_name": WEBUI_NAME, | |
"start_url": "/", | |
"display": "standalone", | |
"background_color": "#343541", | |
"theme_color": "#343541", | |
"orientation": "portrait-primary", | |
"icons": [{"src": "/static/logo.png", "type": "image/png", "sizes": "500x500"}], | |
} | |
async def get_opensearch_xml(): | |
xml_content = rf""" | |
<OpenSearchDescription xmlns="http://a9.com/-/spec/opensearch/1.1/" xmlns:moz="http://www.mozilla.org/2006/browser/search/"> | |
<ShortName>{WEBUI_NAME}</ShortName> | |
<Description>Search {WEBUI_NAME}</Description> | |
<InputEncoding>UTF-8</InputEncoding> | |
<Image width="16" height="16" type="image/x-icon">{WEBUI_URL}/favicon.png</Image> | |
<Url type="text/html" method="get" template="{WEBUI_URL}/?q={"{searchTerms}"}"/> | |
<moz:SearchForm>{WEBUI_URL}</moz:SearchForm> | |
</OpenSearchDescription> | |
""" | |
return Response(content=xml_content, media_type="application/xml") | |
async def healthcheck(): | |
return {"status": True} | |
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static") | |
app.mount("/cache", StaticFiles(directory=CACHE_DIR), name="cache") | |
if os.path.exists(FRONTEND_BUILD_DIR): | |
mimetypes.add_type("text/javascript", ".js") | |
app.mount( | |
"/", | |
SPAStaticFiles(directory=FRONTEND_BUILD_DIR, html=True), | |
name="spa-static-files", | |
) | |
else: | |
log.warning( | |
f"Frontend build directory not found at '{FRONTEND_BUILD_DIR}'. Serving API only." | |
) | |