File size: 13,794 Bytes
fb238e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import re
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
import numpy as np
import json
import jsonlines
from tqdm import tqdm, trange
def set_seed(args):
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def filter_noise(text):
space_pattern = '([\u4e00-\u9fa5|0-9|οΌ|γ|οΌ|οΌ|@|Β₯|β¦β¦|ββ|γ|γ|β|β|γ|οΌ|οΌ|β|β|οΌ|οΌ|γ|γ|γ|γ|Β·|ο½|-|+])\s+([\u4e00-\u9fa5|0-9|οΌ|γ|οΌ|οΌ|@|Β₯|β¦β¦|ββ|γ|γ|β|β|γ|οΌ|οΌ|β|β|οΌ|οΌ|γ|γ|γ|γ|Β·|ο½|-|+])'
text = re.sub(space_pattern, r'\1\2', text)
text = re.sub(space_pattern, r'\1\2', text)
patterns = ['εΌη¨ζ₯ζ.*$', 'εθθ΅ζ.*$', '\[.*\]', 'γ.*γ', 'εζε°εοΌ', 'εζ转载οΌ', 'ζ¬ζ转θͺοΌ', 'ζ¬ζζθ¦οΌ', '<unk>']
for pattern in patterns:
text = re.sub(pattern, "", text)
return text.strip()
def get_raw_data(raw_data):
train_data = {}
with open(raw_data, 'r', encoding='utf8') as fh:
for line in fh:
line = json.loads(line)
for key in line.keys():
if key not in train_data.keys():
train_data[key] = [line[key]]
else:
train_data[key].append(line[key])
return train_data
def save_output(input_text, output, output_file):
with jsonlines.open(output_file, mode='a') as writer:
for text_in,text_out in zip(input_text, output):
otc = {}
otc['text_a'] = str(text_in)
otc['text_b'] = str(text_out)
writer.write(otc)
def enforce_repetition_penalty(lprobs, prev_output_tokens, repetition_penalty = 1.5):
"""repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858). """
for i in range(len(prev_output_tokens)):
for previous_token in set(prev_output_tokens[i]):
# if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
if lprobs[i, previous_token] < 0:
lprobs[i, previous_token] *= repetition_penalty
else:
lprobs[i, previous_token] /= repetition_penalty
def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
""" Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
Args:
logits: logits distribution shape (vocabulary size)
top_k > 0: keep only top k tokens with highest probability (top-k filtering).
top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
"""
# assert logits.dim() == 1# batch size 1 for now - could be updated for more but the code would be less clear
top_k = min(top_k, logits.size(-1)) # Safety check
if top_k > 0:
# Remove all tokens with a probability less than the last token of the top-k
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
logits[indices_to_remove] = filter_value
if top_p > 0.0:
sorted_logits, sorted_indices = torch.sort(logits, dim=-1, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
# Shift the indices to the right to keep also the first token above the threshold
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
for i in range(sorted_indices.size()[0]):
indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
logits[i][indices_to_remove] = filter_value
# indices_to_remove = sorted_indices[sorted_indices_to_remove]
# logits[indices_to_remove] = filter_value
return logits
def sample_sequence_conditional(model, length, context, latent_z=None, temperature=1, top_k=0, top_p=0.0, repetition_penalty=1.0, device='cpu'):
context = torch.tensor(context, dtype=torch.long, device=device)
context = context.unsqueeze(0)
generated = context
with torch.no_grad():
for i in trange(length):
if i == 2:
generated[generated[:, 1] == 127, 1] = 0
attention_mask = model.get_attn_mask(generated.shape[1]).to(device)
inputs = {'input_ids': generated, 'latent_state': latent_z, 'attention_mask':attention_mask, 'mems':None}
outputs = model(**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
next_token_logits = outputs[0][:, -1, :] / temperature
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
log_probs = F.softmax(filtered_logits, dim=-1)
if repetition_penalty != 1.0:
enforce_repetition_penalty(log_probs, generated, repetition_penalty)
next_token = torch.multinomial(log_probs, num_samples=1)
generated = torch.cat((generated, next_token), dim=1)
# pdb.set_trace()
# if next_token[0,0].item() == decoder_tokenizer.encode('<EOS>')[0]:
if next_token[0, 0] == 50000: # end of token 50000
break
return generated
def latent_code_from_text(text, tokenizer_encoder, model_vae, args, scale=1.0):
tokenized1 = tokenizer_encoder.encode(text)
coded = torch.Tensor([tokenized1]).long()
with torch.no_grad():
coded = coded.to(device)
outputs = model_vae.encoder(coded, attention_mask=(coded > 0).float())
pooled_hidden_fea = outputs[1]
mean, logvar = model_vae.encoder.linear(pooled_hidden_fea).chunk(2, -1)
std = logvar.mul(0.5).exp()
eps = torch.zeros_like(std).normal_()
return mean + torch.mul(eps, std)*scale
def text_from_latent_code(latent_z, model_vae, args, tokenizer_decoder, prompt=None):
bos_token = tokenizer_decoder.convert_tokens_to_ids(tokenizer_decoder.bos_token)
context_tokens = [bos_token]
if prompt is not None:
context_tokens.append(tokenizer_decoder.encode(prompt)[:-1]) # remove eos token
out = sample_sequence_conditional(
model=model_vae.decoder,
context=context_tokens,
latent_z=latent_z,
length= args.max_out_length, # Chunyuan: Fix length; or use <EOS> to complete a sentence
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
repetition_penalty=args.repetition_penalty,
device=device
)
out_tokens = out[0, :].tolist()
out_tokens = out_tokens[1:out_tokens.index(50000)] if 50000 in out_tokens else out_tokens # remove bos and eos
text_x1 = tokenizer_decoder.decode(out_tokens, clean_up_tokenization_spaces=True)
return text_x1
def simulate(model_vae, tokenizer_encoder, tokenizer_decoder, args, sent_input, prompt=None):
latent_z, _ = latent_code_from_text(sent_input, tokenizer_encoder, model_vae, args)
text_analogy = text_from_latent_code(latent_z, model_vae, args, tokenizer_decoder, prompt=prompt)
return text_analogy
def switch(next_value, init, is_update):
is_update = is_update.type_as(next_value)
return (1-is_update)*init + is_update*next_value
def sample_sequence_conditional_batch(model, max_out_length, context_tokens_tensor, context_length_tensor, latent_z=None, temperature=1, top_k=0, top_p=0.0, repetition_penalty=1.0, device='cpu', end_token=50000):
org_context_length = torch.min(context_length_tensor).item()
batch_size = context_tokens_tensor.shape[0]
generated = context_tokens_tensor[:,:org_context_length]
counter = org_context_length
output_tokens_lists = []
output_order = []
orig_order = torch.LongTensor(list(range(batch_size)))
with torch.no_grad():
while counter < max_out_length:
if counter == org_context_length+2:
generated[generated[:,org_context_length] == 127, org_context_length] = 0
attention_mask = model.get_attn_mask(generated.shape[1]).to(device)
inputs = {'input_ids': generated, 'latent_state': latent_z, 'attention_mask': attention_mask}
outputs = model(**inputs) # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
next_token_logits = outputs[0][:, -1, :] / temperature
filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)
# if counter == org_context_length:
# filtered_logits[:, 43488] = -float('Inf') # forbid starting with 'γ'
log_probs = F.softmax(filtered_logits, dim=-1)
if repetition_penalty != 1.0:
enforce_repetition_penalty(log_probs, generated, repetition_penalty)
if any(log_probs.sum(dim=-1) <= 0.0) :
break
next_token = torch.multinomial(log_probs, num_samples=1).view(-1)
next_token = switch(next_token, context_tokens_tensor[:, counter], context_length_tensor<=counter)
if torch.all(next_token == end_token).item():
break
stop_idx = next_token == end_token
output_order.extend(orig_order[stop_idx].tolist())
finished = generated[stop_idx]
output_tokens_lists.extend(finished.detach().cpu().tolist())
# continue with non-ending tokens
conti_idx = next_token != end_token
orig_order = orig_order[conti_idx]
generated = generated[conti_idx]
latent_z = latent_z[conti_idx]
next_token = next_token[conti_idx]
context_tokens_tensor = context_tokens_tensor[conti_idx]
context_length_tensor = context_length_tensor[conti_idx]
batch_size = generated.shape[0]
generated = torch.cat((generated, next_token.view(batch_size, 1)), dim=-1)
counter += 1
output_order.extend(orig_order.tolist())
generated = generated.detach().cpu().tolist()
output_tokens_lists.extend(generated)
output_tokens_lists = [tokens[:tokens.index(end_token)] if end_token in tokens else tokens for tokens in output_tokens_lists]
output_tokens_lists = [tokens for _,tokens in sorted(zip(output_order, output_tokens_lists))]
return output_tokens_lists
def latent_code_from_text_batch(texts, tokenizer_encoder, model_vae, args):
tokens_tensor_list = []
for text in texts:
tokens = tokenizer_encoder.encode(text)[:510]
tokens_tensor_list.append(torch.tensor([101]+tokens+[102]))
coded = pad_sequence(tokens_tensor_list, batch_first=True, padding_value=0).long()
with torch.no_grad():
coded = coded.to(device)
pooled_hidden_fea = model_vae.encoder(coded, attention_mask=(coded > 0).float())[1]
mean, logvar = model_vae.encoder.linear(pooled_hidden_fea).chunk(2, -1)
std = logvar.mul(0.5).exp()
eps = torch.zeros_like(std).normal_()
latent_z = mean + torch.mul(eps, std)*args.std_scale
return latent_z
def text_from_latent_code_batch(latent_z, model_vae, args, tokenizer_decoder, prompt=None):
past = latent_z
batch_size = latent_z.shape[0]
bos_token = tokenizer_decoder.convert_tokens_to_ids(tokenizer_decoder.bos_token)
end_token = tokenizer_decoder.convert_tokens_to_ids(tokenizer_decoder.eos_token)
if prompt is not None:
prompt = [[bos_token] + tokenizer_decoder.encode(text)[:-1] for text in prompt]
else:
prompt = [[bos_token]]*batch_size
context_tokens_tensor = torch.tensor([[end_token]*args.max_out_length]*batch_size).to(device) # 2-d tensor
context_length_tensor = torch.tensor([1]*batch_size).to(device)
for i in range(batch_size):
context_tokens_tensor[i,:len(prompt[i])] = torch.tensor(prompt[i]).long().to(device)
context_length_tensor[i] = len(prompt[i])
# length = 128 # maximum length, but not used
out = sample_sequence_conditional_batch(
model=model_vae.decoder,
max_out_length= args.max_out_length, # Chunyuan: Fix length; or use <EOS> to complete a sentence
context_tokens_tensor=context_tokens_tensor,
context_length_tensor=context_length_tensor,
latent_z=latent_z,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
repetition_penalty=args.repetition_penalty,
device=device
)
out_text = []
for i, tokens in enumerate(out):
tokens = tokens[len(prompt[i]):]
tokens = tokens[:tokens.index(end_token)] if end_token in tokens else tokens
text = tokenizer_decoder.decode(tokens, clean_up_tokenization_spaces=True)
out_text.append(filter_noise(text))
return out_text
def simulate_batch(model_vae, tokenizer_encoder, tokenizer_decoder, args, sent_inputs, prompt=None):
latent_z = latent_code_from_text_batch(sent_inputs, tokenizer_encoder, model_vae, args)
text_analogy = text_from_latent_code_batch(latent_z, model_vae, args, tokenizer_decoder, prompt=prompt)
return text_analogy
def simulate_bz(model_vae, tokenizer_encoder, tokenizer_decoder, args, sent_inputs, prompt=None):
latent_z = latent_code_from_text_batch(sent_inputs, tokenizer_encoder, model_vae, args)
return latent_z
def my_shuffle(x, index):
result = []
for field in index:
result.append(x[field])
return result
|