Spaces:
skf15963
/
Runtime error

File size: 13,794 Bytes
fb238e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import re
import torch
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence
import numpy as np
import json
import jsonlines
from tqdm import tqdm, trange

def set_seed(args):
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if args.n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

def filter_noise(text):
    space_pattern = '([\u4e00-\u9fa5|0-9|,|。|?|!|@|Β₯|……|β€”β€”|γ€Š|》|β€œ|”|、|οΌ›|:|β€˜|’|(|οΌ‰|γ€Œ|」|【|】|Β·|~|-|+])\s+([\u4e00-\u9fa5|0-9|,|。|?|!|@|Β₯|……|β€”β€”|γ€Š|》|β€œ|”|、|οΌ›|:|β€˜|’|(|οΌ‰|γ€Œ|」|【|】|Β·|~|-|+])'
    text = re.sub(space_pattern, r'\1\2', text)
    text = re.sub(space_pattern, r'\1\2', text)
    patterns = ['引用ζ—₯期.*$', '参考衄料.*$', '\[.*\]', '【.*】', 'εŽŸζ–‡εœ°ε€οΌš', 'εŽŸζ–‡θ½¬θ½½οΌš', 'ζœ¬ζ–‡θ½¬θ‡ͺ:', 'ζœ¬ζ–‡ζ‘˜θ¦οΌš', '<unk>']
    for pattern in patterns:
        text = re.sub(pattern, "", text)
    return text.strip()

def get_raw_data(raw_data):
    train_data = {}
    with open(raw_data, 'r', encoding='utf8') as fh:
        for line in fh:
            line = json.loads(line)
            for key in line.keys():
                if key not in train_data.keys():
                    train_data[key] = [line[key]]
                else:
                    train_data[key].append(line[key])
    return train_data

def save_output(input_text, output, output_file):
    with jsonlines.open(output_file, mode='a') as writer:
        for text_in,text_out in zip(input_text, output):
            otc = {}
            otc['text_a'] = str(text_in)
            otc['text_b'] = str(text_out)
            writer.write(otc)

def enforce_repetition_penalty(lprobs, prev_output_tokens, repetition_penalty = 1.5):
    """repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858). """
    for i in range(len(prev_output_tokens)):
        for previous_token in set(prev_output_tokens[i]):
            # if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
            if lprobs[i, previous_token] < 0:
                lprobs[i, previous_token] *= repetition_penalty
            else:
                lprobs[i, previous_token] /= repetition_penalty

def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
    """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
        Args:
            logits: logits distribution shape (vocabulary size)
            top_k > 0: keep only top k tokens with highest probability (top-k filtering).
            top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
                Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    # assert logits.dim() == 1# batch size 1 for now - could be updated for more but the code would be less clear
    top_k = min(top_k, logits.size(-1))  # Safety check
    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

    if top_p > 0.0:
        sorted_logits, sorted_indices = torch.sort(logits, dim=-1, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        for i in range(sorted_indices.size()[0]):
            indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
            logits[i][indices_to_remove] = filter_value
        # indices_to_remove = sorted_indices[sorted_indices_to_remove]
        # logits[indices_to_remove] = filter_value
    return logits

def sample_sequence_conditional(model, length, context, latent_z=None, temperature=1, top_k=0, top_p=0.0, repetition_penalty=1.0, device='cpu'):

    context = torch.tensor(context, dtype=torch.long, device=device)
    context = context.unsqueeze(0)
    generated = context
    with torch.no_grad():
        for i in trange(length):
            if i == 2:
                generated[generated[:, 1] == 127, 1] = 0 
            attention_mask = model.get_attn_mask(generated.shape[1]).to(device)
            inputs = {'input_ids': generated, 'latent_state': latent_z, 'attention_mask':attention_mask, 'mems':None}
            outputs = model(**inputs)  # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
            next_token_logits = outputs[0][:, -1, :] / temperature
            filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)

            log_probs = F.softmax(filtered_logits, dim=-1)
            if repetition_penalty != 1.0:
                enforce_repetition_penalty(log_probs, generated, repetition_penalty)
            next_token = torch.multinomial(log_probs, num_samples=1)
            generated = torch.cat((generated, next_token), dim=1)
            # pdb.set_trace()
            # if next_token[0,0].item() == decoder_tokenizer.encode('<EOS>')[0]:
            if next_token[0, 0] == 50000: # end of token 50000
                break

    return generated

def latent_code_from_text(text, tokenizer_encoder, model_vae, args, scale=1.0):
    tokenized1 = tokenizer_encoder.encode(text)
    coded = torch.Tensor([tokenized1]).long()
    with torch.no_grad():
        coded = coded.to(device)
        outputs = model_vae.encoder(coded, attention_mask=(coded > 0).float())
        pooled_hidden_fea = outputs[1]

        mean, logvar = model_vae.encoder.linear(pooled_hidden_fea).chunk(2, -1)
        std = logvar.mul(0.5).exp()
        eps = torch.zeros_like(std).normal_()

        return mean + torch.mul(eps, std)*scale

def text_from_latent_code(latent_z, model_vae, args, tokenizer_decoder, prompt=None):
    bos_token = tokenizer_decoder.convert_tokens_to_ids(tokenizer_decoder.bos_token)
    context_tokens = [bos_token]

    if prompt is not None:
        context_tokens.append(tokenizer_decoder.encode(prompt)[:-1]) # remove eos token

    out = sample_sequence_conditional(
        model=model_vae.decoder,
        context=context_tokens,
        latent_z=latent_z,
        length= args.max_out_length, # Chunyuan: Fix length; or use <EOS> to complete a sentence
        temperature=args.temperature,
        top_k=args.top_k,
        top_p=args.top_p,
        repetition_penalty=args.repetition_penalty,
        device=device
    )

    out_tokens = out[0, :].tolist()
    out_tokens = out_tokens[1:out_tokens.index(50000)] if 50000 in out_tokens else out_tokens # remove bos and eos
    text_x1 = tokenizer_decoder.decode(out_tokens, clean_up_tokenization_spaces=True)

    return text_x1


def simulate(model_vae, tokenizer_encoder, tokenizer_decoder, args, sent_input, prompt=None):
    latent_z, _ = latent_code_from_text(sent_input, tokenizer_encoder, model_vae, args)
    text_analogy = text_from_latent_code(latent_z, model_vae, args, tokenizer_decoder, prompt=prompt)
    
    return text_analogy

def switch(next_value, init, is_update):
    is_update = is_update.type_as(next_value)
    return (1-is_update)*init + is_update*next_value

def sample_sequence_conditional_batch(model, max_out_length, context_tokens_tensor, context_length_tensor, latent_z=None, temperature=1, top_k=0, top_p=0.0, repetition_penalty=1.0, device='cpu', end_token=50000):
    org_context_length = torch.min(context_length_tensor).item()
    batch_size = context_tokens_tensor.shape[0]

    generated = context_tokens_tensor[:,:org_context_length]
    counter = org_context_length

    output_tokens_lists = []
    output_order = []
    orig_order = torch.LongTensor(list(range(batch_size)))

    with torch.no_grad():
        while counter < max_out_length:
            if counter == org_context_length+2:
                generated[generated[:,org_context_length] == 127, org_context_length] = 0 
            attention_mask = model.get_attn_mask(generated.shape[1]).to(device)
            inputs = {'input_ids': generated, 'latent_state': latent_z, 'attention_mask': attention_mask}
            outputs = model(**inputs)  # Note: we could also use 'past' with GPT-2/Transfo-XL/XLNet (cached hidden-states)
            next_token_logits = outputs[0][:, -1, :] / temperature
            filtered_logits = top_k_top_p_filtering(next_token_logits, top_k=top_k, top_p=top_p)

            # if counter == org_context_length:
            #     filtered_logits[:, 43488] = -float('Inf') # forbid starting with 'γ€Š'
            log_probs = F.softmax(filtered_logits, dim=-1)

            if repetition_penalty != 1.0:
                enforce_repetition_penalty(log_probs, generated, repetition_penalty)

            if any(log_probs.sum(dim=-1) <= 0.0) :
                break
            next_token = torch.multinomial(log_probs, num_samples=1).view(-1)
            next_token = switch(next_token, context_tokens_tensor[:, counter], context_length_tensor<=counter)

            if torch.all(next_token == end_token).item():
                break

            stop_idx = next_token == end_token
            output_order.extend(orig_order[stop_idx].tolist())

            finished = generated[stop_idx]
            output_tokens_lists.extend(finished.detach().cpu().tolist())
            # continue with non-ending tokens
            conti_idx = next_token != end_token
            orig_order = orig_order[conti_idx]
            generated = generated[conti_idx]
            latent_z = latent_z[conti_idx]

            next_token = next_token[conti_idx]
            context_tokens_tensor = context_tokens_tensor[conti_idx]
            context_length_tensor = context_length_tensor[conti_idx]
            batch_size = generated.shape[0]

            generated = torch.cat((generated, next_token.view(batch_size, 1)), dim=-1)
            counter += 1

        output_order.extend(orig_order.tolist())
        generated = generated.detach().cpu().tolist()
        output_tokens_lists.extend(generated)
        output_tokens_lists = [tokens[:tokens.index(end_token)] if end_token in tokens else tokens for tokens in output_tokens_lists]

        output_tokens_lists = [tokens for _,tokens in sorted(zip(output_order, output_tokens_lists))]

    return output_tokens_lists

def latent_code_from_text_batch(texts, tokenizer_encoder, model_vae, args):
    tokens_tensor_list = []
    for text in texts:
        tokens = tokenizer_encoder.encode(text)[:510]
        tokens_tensor_list.append(torch.tensor([101]+tokens+[102]))

    coded = pad_sequence(tokens_tensor_list, batch_first=True, padding_value=0).long()
    with torch.no_grad():
        coded = coded.to(device)
        pooled_hidden_fea = model_vae.encoder(coded, attention_mask=(coded > 0).float())[1]
        mean, logvar = model_vae.encoder.linear(pooled_hidden_fea).chunk(2, -1)

        std = logvar.mul(0.5).exp()
        eps = torch.zeros_like(std).normal_()

        latent_z = mean + torch.mul(eps, std)*args.std_scale

        return latent_z

def text_from_latent_code_batch(latent_z, model_vae, args, tokenizer_decoder, prompt=None):
    past = latent_z
    batch_size = latent_z.shape[0]
    bos_token = tokenizer_decoder.convert_tokens_to_ids(tokenizer_decoder.bos_token)
    end_token = tokenizer_decoder.convert_tokens_to_ids(tokenizer_decoder.eos_token)

    if prompt is not None:
        prompt = [[bos_token] + tokenizer_decoder.encode(text)[:-1] for text in prompt]
    else:
        prompt = [[bos_token]]*batch_size

    context_tokens_tensor = torch.tensor([[end_token]*args.max_out_length]*batch_size).to(device) # 2-d tensor
    context_length_tensor = torch.tensor([1]*batch_size).to(device)
    for i in range(batch_size):
        context_tokens_tensor[i,:len(prompt[i])] = torch.tensor(prompt[i]).long().to(device)
        context_length_tensor[i] = len(prompt[i])

    # length = 128 # maximum length, but not used
    out = sample_sequence_conditional_batch(
        model=model_vae.decoder,
        max_out_length= args.max_out_length, # Chunyuan: Fix length; or use <EOS> to complete a sentence
        context_tokens_tensor=context_tokens_tensor,
        context_length_tensor=context_length_tensor,
        latent_z=latent_z,
        temperature=args.temperature,
        top_k=args.top_k,
        top_p=args.top_p,
        repetition_penalty=args.repetition_penalty,
        device=device
    )

    out_text = []
    for i, tokens in enumerate(out):
        tokens = tokens[len(prompt[i]):]
        tokens = tokens[:tokens.index(end_token)] if end_token in tokens else tokens
        text = tokenizer_decoder.decode(tokens, clean_up_tokenization_spaces=True)
        out_text.append(filter_noise(text))
    return out_text


def simulate_batch(model_vae, tokenizer_encoder, tokenizer_decoder, args, sent_inputs, prompt=None):
    latent_z = latent_code_from_text_batch(sent_inputs, tokenizer_encoder, model_vae, args)
    text_analogy = text_from_latent_code_batch(latent_z, model_vae, args, tokenizer_decoder, prompt=prompt)
    return text_analogy

def simulate_bz(model_vae, tokenizer_encoder, tokenizer_decoder, args, sent_inputs, prompt=None):
    latent_z = latent_code_from_text_batch(sent_inputs, tokenizer_encoder, model_vae, args)
    return latent_z

def my_shuffle(x, index):
    result = []
    for field in index:
        result.append(x[field])
    return result