File size: 11,396 Bytes
fb238e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# encoding=utf-8
import torch, math
import torch.nn.functional as F


def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
    # This function has been mostly taken from huggingface conversational ai code at
    # https://medium.com/huggingface/how-to-build-a-state-of-the-art-conversational-ai-with-transfer-learning-2d818ac26313
    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value
    if top_p > 0.0:
        # convert to 1D
        sorted_logits, sorted_indices = torch.sort(logits, dim=-1, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        for i in range(sorted_indices.size()[0]):
            indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
            logits[i][indices_to_remove] = filter_value
    return logits


def enforce_repetition_penalty(lprobs, prev_output_tokens, repetition_penalty=1.5):
    """repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858). """
    for previous_token in set(prev_output_tokens):
        # if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
        if lprobs[previous_token] < 0:
            lprobs[previous_token] *= repetition_penalty
        else:
            lprobs[previous_token] /= repetition_penalty


def switch(next_value, init, is_update):  # 换成真实token
    is_update = is_update.type_as(next_value)
    return (1-is_update)*init + is_update*next_value


def get_atten_mask(batch_size, seq_length, memory_length=0):
    memory_attention_mask = torch.ones(
        (batch_size, 1, seq_length, seq_length + memory_length), dtype=torch.int16)
    memory_attention_mask = torch.tril(
        torch.triu(memory_attention_mask, 1 - seq_length + memory_length), memory_length)

    return memory_attention_mask  # [bs, 1, seq_len, seq_len+M]


def get_masks_and_position_ids(data, mem_length=None):
    # Extract batch size and sequence length.
    batch_size, seq_length = data.size()
    # Attention mask (lower triangular).
    attention_mask = torch.ones((1, seq_length, seq_length + mem_length), device=data.device)
    attention_mask = torch.tril(torch.triu(attention_mask, 1 - seq_length + mem_length), mem_length)
    attention_mask = attention_mask.unsqueeze(1)
    # Position ids.
    position_ids = torch.arange(seq_length, dtype=torch.long,
                                device=data.device)
    position_ids = position_ids.unsqueeze(0).expand_as(data)
    return attention_mask, position_ids


def sample_sequence_batch(model, context_tokens_tensor, context_length_tensor, max_out_seq=None, mems=None,
                          end_token_id=None, repetition_penalty=1.0, temperature=1.0, top_k=0, top_p=0.0):
    """_summary_

    Args:
        model (_type_): _description_
        context_tokens_tensor (Tensor): [bs, seq_len]
        context_length_tensor (Tensor): [bs, ]
        max_out_seq (_type_, optional): _description_. Defaults to None.
        mems (_type_, optional): _description_. Defaults to None.
        end_token_id (_type_, optional): _description_. Defaults to None.
        repetition_penalty (float, optional): _description_. Defaults to 1.0.
        temperature (float, optional): _description_. Defaults to 1.0.
        top_k (int, optional): _description_. Defaults to 0.
        top_p (float, optional): _description_. Defaults to 0.0.

    Returns:
        _type_: _description_
    """
    
    model_dtype = next(model.parameters()).dtype
    org_context_length = torch.min(context_length_tensor).item()
    batch_size = context_tokens_tensor.shape[0]
    tokens = context_tokens_tensor[:, :org_context_length]
    attention_mask = get_atten_mask(batch_size, org_context_length).cuda(context_tokens_tensor.device).to(model_dtype)
    position_ids = torch.arange(org_context_length, dtype=torch.long,
                                device=tokens.device)
    position_ids = position_ids.unsqueeze(0).expand_as(tokens)

    counter, mem_length = 0, 0
    if mems is None:
        mems = []
    if end_token_id is None:
        end_token_id = 50000
    if max_out_seq is None:
        max_out_seq = 512

    output_tokens_lists = []
    
    # record order
    origin_order = torch.tensor(range(batch_size), device=tokens.device)
    output_order = []

    # record log_probs
    log_probs_tensor = torch.tensor([0.0] * batch_size, device=tokens.device)
    log_probs_list = []

    with torch.no_grad():
        # while counter < (max_out_seq - org_context_length):
        while counter < max_out_seq:
            index = org_context_length + counter
            if counter == 0:
                output = model.forward(input_ids=tokens, position_ids=position_ids, 
                                              attention_mask=attention_mask, hidden_states=mems)
                logits, mems = output.logits, output.hidden_states
            else:
                output = model.forward(input_ids=tokens[:, index - 1: index], position_ids=tokens.new_ones((1, 1)) * (index - 1), 
                                              attention_mask=tokens.new_ones(batch_size, 1, 1, mem_length + 1).to(model_dtype), hidden_states=mems)
                logits, mems = output.logits, output.hidden_states
            logits = logits[:, -1]
            logits /= temperature
            logits = top_k_logits(logits, top_k=top_k, top_p=top_p)
            # if repetition_penalty != 1.0:
            #     for bz in range(batch_size):
            #         enforce_repetition_penalty(logits[bz, :], tokens[bz, :], repetition_penalty)
            log_probs = F.softmax(logits, dim=-1)  # [bs, vocab_size]

            # if repetition_penalty != 1.0:
            #     for bz in range(batch_size):
            #         enforce_repetition_penalty(
            #             log_probs[bz, :], tokens[bz, :], repetition_penalty)

            prev = torch.multinomial(log_probs, num_samples=1).view(-1)

            if index < torch.max(context_length_tensor).item():
                prev = switch(
                    prev, context_tokens_tensor[:, index], context_length_tensor <= index)
            
            for i in range(batch_size):
                if index > context_length_tensor[i] and prev[i] != end_token_id:
                    log_probs_tensor[i] += math.log(log_probs[i][prev[i]] + 1e-6) ###
                if prev[i] == end_token_id:
                    log_probs_tensor[i] /= (context_length_tensor[i].cpu() - index)

            # with torch.autocast('cpu'):
            stop_idx = prev == end_token_id
            if torch.all(stop_idx).item():
                output_order.extend(origin_order[stop_idx].tolist())
                break

            finished = tokens[stop_idx]
            output_tokens_lists.extend(finished.detach().cpu().tolist())
            log_probs_list.extend(log_probs_tensor[stop_idx].tolist())
            output_order.extend(origin_order[stop_idx].tolist())

            # continue with non-ending tokens
            conti_idx = (prev != end_token_id)
            origin_order = origin_order[conti_idx]
            tokens, prev = tokens[conti_idx], prev[conti_idx]
            context_tokens_tensor = context_tokens_tensor[conti_idx]
            context_length_tensor = context_length_tensor[conti_idx]
            log_probs_tensor = log_probs_tensor[conti_idx]
            batch_size = tokens.shape[0]
            for im in range(len(mems)):
                mems[im] = mems[im][conti_idx, :, :]

            tokens = torch.cat((tokens, prev.view(batch_size, 1)), dim=-1)

            counter += 1

    output_tokens_lists.extend(tokens.detach().cpu().tolist())
    log_probs_list.extend(log_probs_tensor.tolist())
    output_order.extend(origin_order.tolist()) ###
    output_tokens_lists = [tokens[:tokens.index(
        end_token_id)] if end_token_id in tokens else tokens for tokens in output_tokens_lists]

    output_tokens_lists = [tokens for _, tokens in sorted(zip(output_order, output_tokens_lists))]
    output_log_porbs = [prob for _, prob in sorted(zip(output_order, log_probs_list))]

    return output_tokens_lists, output_log_porbs


def sample_sequence(model, tokens, attention_mask, do_sampling=True,
                    repetition_penalty=1.0, max_out_seq=None, mems=None, end_token_id=None,
                    mem_length=0, temperature=1.0, top_k=0, top_p=0.0):
    """_summary_

    Args:
        model (_type_): _description_
        tokens (Tensor): [1, seq_len]
        attention_mask (Tensor): [1, 1, seq_len, seq_len]
        do_sampling (bool, optional): _description_. Defaults to True.
        repetition_penalty (float, optional): _description_. Defaults to 1.0.
        max_out_seq (_type_, optional): _description_. Defaults to None.
        mems (_type_, optional): _description_. Defaults to None.
        end_token (_type_, optional): _description_. Defaults to None.
        mem_length (int, optional): _description_. Defaults to 0.
        temperature (float, optional): _description_. Defaults to 1.0.
        top_k (int, optional): _description_. Defaults to 0.
        top_p (float, optional): _description_. Defaults to 0.0.

    Returns:
        _type_: _description_
    """
    counter = 0
    if mems is None:
        mems = []
    if end_token_id is None:
        end_token_id = 50000
    if max_out_seq is None:
        max_out_seq = 512
    org_context_length = tokens.size(1)
    with torch.no_grad():
        # while counter < (max_out_seq - org_context_length):
        while counter < max_out_seq:
            if counter == 0:
                logits, *mems = model(input_ids=tokens, position_ids=None,
                                      attention_mask=attention_mask, mems=mems)
            else:
                index = org_context_length + counter
                logits, *mems = model(input_ids=tokens[:, index - 1: index], position_ids=None,
                                      attention_mask=tokens.new_ones(1, 1, 1, mem_length + 1), mems=mems)
            logits = logits[:, -1]
            logits /= temperature
            if do_sampling:
                logits = top_k_logits(logits, top_k=top_k, top_p=top_p)
            log_probs = F.softmax(logits, dim=-1)

            if repetition_penalty != 1.0:
                enforce_repetition_penalty(
                    log_probs[0, :], tokens[0, :], repetition_penalty)
            prev = torch.multinomial(log_probs, num_samples=1)[0]
            is_end = (prev == end_token_id)
            if is_end:
                break
            tokens = torch.cat((tokens, prev.view(1, 1)), dim=1)
            counter += 1

    output_tokens_list = tokens.detach().cpu().tolist()
    if end_token_id in output_tokens_list:
        output_tokens_list = output_tokens_list[:output_tokens_list.index(
            end_token_id)]

    return output_tokens_list[0], mems