summary / fengshen /examples /classification /finetune_classification_bert-3.9B_wsc.sh
skf15963's picture
Duplicate from fclong/summary
fb238e8
raw
history blame
4.38 kB
#!/bin/bash
#SBATCH --job-name=slurm-test # create a short name for your job
#SBATCH --nodes=1 # node count
#SBATCH --ntasks=2 # total number of tasks across all nodes
#SBATCH --cpus-per-task=16 # cpu-cores per task (>1 if multi-threaded tasks)
#SBATCH --mem-per-cpu=8G # memory per cpu-core (4G is default)
#SBATCH --gres=gpu:2 # number of gpus per node
#SBATCH --mail-type=ALL # send email when job begins, ends or failed etc.
export TORCH_EXTENSIONS_DIR=/cognitive_comp/yangping/cache/torch_extendsions
BERT_NAME=bert-3.9B
TASK=wsc
TEXTA_NAME=texta
LABEL_NAME=label
ID_NAME=id
BATCH_SIZE=16
VAL_BATCH_SIZE=56
ZERO_STAGE=2
ROOT_PATH=cognitive_comp
DATA_DIR=/cognitive_comp/yangping/data/unidata/multichoice/mrc_multichoice_data/other/cluewsc2020/
PRETRAINED_MODEL_PATH=/$ROOT_PATH/yangping/pretrained_model/$BERT_NAME/
CHECKPOINT_PATH=/$ROOT_PATH/yangping/checkpoints/fengshen-finetune/$TASK/
DEFAULT_ROOT_DIR=/cognitive_comp/yangping/nlp/Fengshenbang-LM/fengshen/scripts/log/$TASK
OUTPUT_PATH=/$ROOT_PATH/yangping/nlp/modelevaluation/output/${TASK}_predict.json
config_json="./ds_config.$SLURM_JOBID.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
# reduce_bucket_size: hidden_size*hidden_size
# stage3_prefetch_bucket_size: 0.9 * hidden_size * hidden_size
# stage3_param_persistence_threshold: 10 * hidden_size
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu": $BATCH_SIZE,
"steps_per_print": 100,
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": 6553600,
"stage3_prefetch_bucket_size": 5898240,
"stage3_param_persistence_threshold": 25600,
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_fp16_weights_on_model_save": true
},
"optimizer": {
"type": "Adam",
"params": {
"lr": 1e-5,
"betas": [
0.9,
0.95
],
"eps": 1e-8,
"weight_decay": 1e-2
}
},
"scheduler": {
"type": "WarmupLR",
"params":{
"warmup_min_lr": 5e-6,
"warmup_max_lr": 1e-5
}
},
"zero_allow_untested_optimizer": false,
"fp16": {
"enabled": true,
"loss_scale": 0,
"loss_scale_window": 1000,
"hysteresis": 2,
"min_loss_scale": 1
},
"activation_checkpointing": {
"partition_activations": false,
"contiguous_memory_optimization": false
},
"wall_clock_breakdown": false
}
EOT
export PL_DEEPSPEED_CONFIG_PATH=$config_json
DATA_ARGS="\
--data_dir $DATA_DIR \
--train_data train.json \
--valid_data dev.json \
--test_data test.json \
--train_batchsize $BATCH_SIZE \
--valid_batchsize $VAL_BATCH_SIZE \
--max_length 128 \
--texta_name $TEXTA_NAME \
--label_name $LABEL_NAME \
--id_name $ID_NAME \
"
MODEL_ARGS="\
--learning_rate 0.00001 \
--weight_decay 0.01 \
--warmup 0.001 \
--num_labels 2 \
"
MODEL_CHECKPOINT_ARGS="\
--monitor val_acc \
--save_top_k 3 \
--mode max \
--every_n_train_steps 10 \
--save_weights_only True \
--dirpath $CHECKPOINT_PATH \
--filename model-{epoch:02d}-{val_acc:.4f} \
"
TRAINER_ARGS="\
--max_epochs 7 \
--gpus 2 \
--strategy deepspeed_stage_3 \
--precision 16 \
--check_val_every_n_epoch 1 \
--val_check_interval 10 \
--default_root_dir $DEFAULT_ROOT_DIR \
"
options=" \
--pretrained_model_path $PRETRAINED_MODEL_PATH \
--output_save_path $OUTPUT_PATH \
$DATA_ARGS \
$MODEL_ARGS \
$MODEL_CHECKPOINT_ARGS \
$TRAINER_ARGS \
"
DOCKER_PATH=/$ROOT_PATH/yangping/containers/pytorch21_06_py3_docker_image.sif
SCRIPT_PATH=/$ROOT_PATH/yangping/nlp/fengshen/fengshen/examples/finetune_classification.py
# python3 $SCRIPT_PATH $options
srun singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $DOCKER_PATH python3 $SCRIPT_PATH $options