|
from fengshen.data.task_dataloader.task_datasets import LCSTSDataModel |
|
from transformers import T5Tokenizer, MT5ForConditionalGeneration |
|
from transformers.optimization import get_linear_schedule_with_warmup |
|
from pytorch_lightning import Trainer, loggers |
|
from pytorch_lightning.callbacks import ModelCheckpoint |
|
from transformers import AutoTokenizer |
|
import pytorch_lightning as pl |
|
import json |
|
import argparse |
|
import torch |
|
import os |
|
import sys |
|
sys.path.append('./') |
|
|
|
|
|
|
|
|
|
def test(): |
|
tokenizer = T5Tokenizer.from_pretrained("google/mt5-small") |
|
article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." |
|
summary = "Weiter Verhandlung in Syrien." |
|
article = "日前,方舟子发文直指林志颖旗下爱碧丽推销假保健品,引起哗然。调查发现,爱碧丽没有自己的生产加工厂。 \ |
|
其胶原蛋白饮品无核心研发,全部代工生产。号称有“逆生长”功效的爱碧丽“梦幻奇迹限量组”售价>高达1080元,实际成本仅为每瓶4元!" |
|
summary = "林志颖公司疑涉虚假营销无厂房无研发" |
|
inputs = tokenizer(article, rturn_tensors="pt") |
|
tt = tokenizer.encode_plus(summary, max_length=64, |
|
padding='max_length', truncation='longest_first') |
|
print('tt:', tt) |
|
print('inputs:', inputs) |
|
with tokenizer.as_target_tokenizer(): |
|
labels = tokenizer(summary, return_tensors="pt") |
|
print('labels:', labels) |
|
print('origin labels:', tokenizer.decode(labels['input_ids'][0])) |
|
|
|
model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small") |
|
|
|
|
|
|
|
|
|
model.eval() |
|
generated_ids = model.generate( |
|
input_ids=inputs['input_ids'], |
|
attention_mask=inputs['attention_mask'], |
|
max_length=150, |
|
num_beams=2, |
|
repetition_penalty=2.5, |
|
length_penalty=1.0, |
|
early_stopping=True |
|
) |
|
preds = [tokenizer.decode(g, skip_special_tokens=True, |
|
clean_up_tokenization_spaces=True) for g in generated_ids] |
|
print(preds) |
|
|
|
|
|
class MT5FinetuneSummaryModelCheckpoint: |
|
@staticmethod |
|
def add_argparse_args(parent_args): |
|
parser = parent_args.add_argument_group('BaseModel') |
|
|
|
parser.add_argument('--monitor', default='train_loss', type=str) |
|
parser.add_argument('--mode', default='min', type=str) |
|
parser.add_argument('--dirpath', default='./ckpt/', type=str) |
|
parser.add_argument( |
|
'--filename', default='model-{epoch:02d}-{train_loss:.4f}', type=str) |
|
parser.add_argument('--save_last', action='store_true', default=True) |
|
parser.add_argument('--save_top_k', default=3, type=float) |
|
parser.add_argument('--every_n_train_steps', default=100, type=float) |
|
parser.add_argument('--save_weights_only', default=True, type=bool) |
|
|
|
return parent_args |
|
|
|
def __init__(self, args): |
|
self.callbacks = ModelCheckpoint(monitor=args.monitor, |
|
save_top_k=args.save_top_k, |
|
mode=args.mode, |
|
every_n_train_steps=args.every_n_train_steps, |
|
save_weights_only=args.save_weights_only, |
|
dirpath=args.dirpath, |
|
filename=args.filename, |
|
save_last=args.save_last) |
|
|
|
|
|
class MT5FinetuneSummary(pl.LightningModule): |
|
|
|
@staticmethod |
|
def add_model_specific_args(parent_args): |
|
parser = parent_args.add_argument_group('BaseModel') |
|
parser.add_argument('--learning_rate', default=1e-4, type=float) |
|
parser.add_argument('--weight_decay', default=0.1, type=float) |
|
parser.add_argument('--warmup', default=0.01, type=float) |
|
return parent_args |
|
|
|
def __init__(self, args, num_data): |
|
super().__init__() |
|
self.args = args |
|
self.num_data = num_data |
|
print('num_data:', num_data) |
|
self.model = MT5ForConditionalGeneration.from_pretrained(args.pretrained_model_path) |
|
|
|
def setup(self, stage) -> None: |
|
if stage == 'fit': |
|
num_gpus = self.trainer.gpus if self.trainer.gpus is not None else 0 |
|
self.total_step = int(self.trainer.max_epochs * self.num_data / |
|
(max(1, num_gpus) * self.trainer.accumulate_grad_batches)) |
|
print('Total training step:', self.total_step) |
|
|
|
def training_step(self, batch, batch_idx): |
|
output = self.model(input_ids=batch['input_ids'], |
|
attention_mask=batch['attention_mask'], labels=batch['labels']) |
|
|
|
|
|
self.log('train_loss', output.loss) |
|
return output.loss |
|
|
|
def comput_metrix(self, logits, labels): |
|
y_pred = torch.argmax(logits, dim=-1) |
|
y_pred = y_pred.view(size=(-1,)) |
|
y_true = labels.view(size=(-1,)).float() |
|
corr = torch.eq(y_pred, y_true) |
|
acc = torch.sum(corr.float())/labels.size()[0] |
|
return acc |
|
|
|
def validation_step(self, batch, batch_idx): |
|
output = self.model(input_ids=batch['input_ids'], |
|
attention_mask=batch['attention_mask'], labels=batch['labels']) |
|
|
|
|
|
self.log('val_loss', output.loss) |
|
|
|
|
|
def predict_step(self, batch, batch_idx): |
|
text = batch['text'] |
|
summary = batch['summary'] |
|
generated_ids = self.model.generate( |
|
input_ids=batch['input_ids'], |
|
attention_mask=batch['attention_mask'], |
|
max_length=self.args.max_dec_length |
|
) |
|
return {"pred": generated_ids, "text": text, "summary": summary} |
|
|
|
def configure_optimizers(self): |
|
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] |
|
paras = list( |
|
filter(lambda p: p[1].requires_grad, self.named_parameters())) |
|
paras = [{ |
|
'params': |
|
[p for n, p in paras if not any(nd in n for nd in no_decay)], |
|
'weight_decay': self.args.weight_decay |
|
}, { |
|
'params': [p for n, p in paras if any(nd in n for nd in no_decay)], |
|
'weight_decay': 0.0 |
|
}] |
|
optimizer = torch.optim.AdamW(paras, lr=self.args.learning_rate) |
|
scheduler = get_linear_schedule_with_warmup( |
|
optimizer, int(self.total_step * self.args.warmup), |
|
self.total_step) |
|
|
|
return [{ |
|
'optimizer': optimizer, |
|
'lr_scheduler': { |
|
'scheduler': scheduler, |
|
'interval': 'step', |
|
'frequency': 1 |
|
} |
|
}] |
|
|
|
|
|
def save_test(data, args, data_model): |
|
tokenizer = AutoTokenizer.from_pretrained(args.pretrained_model_path) |
|
with open(os.path.join(args.output_save_path), 'w', encoding='utf-8') as f: |
|
for _, batch in enumerate(data): |
|
texts = batch['text'] |
|
summarys = batch['summary'] |
|
preds = batch['pred'] |
|
for idx, pred_ids in enumerate(preds): |
|
text = texts[idx] |
|
summary = summarys[idx] |
|
tmp_result = dict() |
|
preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) |
|
for g in pred_ids] |
|
tmp_result['summary'] = ''.join(preds) |
|
tmp_result['label'] = summary |
|
tmp_result['origin_text'] = text |
|
json_data = json.dumps(tmp_result, ensure_ascii=False) |
|
f.write(json_data+'\n') |
|
print('save the result to '+args.output_save_path) |
|
|
|
|
|
def main(): |
|
total_parser = argparse.ArgumentParser("Summary Task") |
|
total_parser.add_argument('--do_eval_only', action='store_true', default=False) |
|
total_parser.add_argument('--pretrained_model_path', default='google/mt5-small', type=str) |
|
total_parser.add_argument('--output_save_path', default='./predict.json', type=str) |
|
|
|
total_parser = LCSTSDataModel.add_data_specific_args(total_parser) |
|
|
|
total_parser = Trainer.add_argparse_args(total_parser) |
|
total_parser = MT5FinetuneSummaryModelCheckpoint.add_argparse_args(total_parser) |
|
total_parser = MT5FinetuneSummary.add_model_specific_args(total_parser) |
|
|
|
args = total_parser.parse_args() |
|
|
|
data_model = LCSTSDataModel(args) |
|
if not args.do_eval_only: |
|
model = MT5FinetuneSummary(args, len(data_model.train_dataloader())) |
|
checkpoint_callback = MT5FinetuneSummaryModelCheckpoint(args).callbacks |
|
logger = loggers.TensorBoardLogger(save_dir=os.path.join( |
|
args.default_root_dir, 'log/'), name='mt5_summary') |
|
trainer = Trainer.from_argparse_args(args, |
|
logger=logger, |
|
callbacks=[checkpoint_callback] |
|
) |
|
trainer.fit(model, data_model) |
|
else: |
|
trainer = Trainer.from_argparse_args(args) |
|
model = MT5FinetuneSummary.load_from_checkpoint( |
|
args.resume_from_checkpoint, args=args, num_data=len(data_model.predict_dataloader())) |
|
result = trainer.predict(model, data_model) |
|
if torch.distributed.get_rank() == 0: |
|
save_test(result, args, data_model) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|
|
|
|
''' |
|
python examples/mt5_summary.py --gpus=1 --test_data=test_public.jsonl |
|
--default_root_dir=/cognitive_comp/ganruyi/fengshen/mt5_summary/eval |
|
--do_eval_only |
|
--resume_from_checkpoint=/cognitive_comp/ganruyi/fengshen/mt5_summary/ckpt/model-epoch=01-train_loss=1.9166.ckpt |
|
--strategy=ddp |
|
''' |
|
|