# -*- encoding: utf-8 -*- ''' Copyright 2022 The International Digital Economy Academy (IDEA). CCNL team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. @File : dreambooth_datasets.py @Time : 2022/11/10 00:20 @Author : Gan Ruyi @Version : 1.0 @Contact : ganruyi@idea.edu.cn @License : (C)Copyright 2022-2023, CCNL-IDEA ''' from torch.utils.data import Dataset from torchvision import transforms from PIL import Image from pathlib import Path def add_data_args(parent_args): parser = parent_args.add_argument_group('taiyi stable diffusion data args') parser.add_argument( "--instance_data_dir", type=str, default=None, required=True, help="A folder containing the training data of instance images.", ) parser.add_argument( "--class_data_dir", type=str, default=None, required=False, help="A folder containing the training data of class images.", ) parser.add_argument( "--instance_prompt", type=str, default=None, help="The prompt with identifier specifying the instance", ) parser.add_argument( "--class_prompt", type=str, default=None, help="The prompt to specify images in the same class as provided instance images.", ) parser.add_argument( "--with_prior_preservation", default=False, action="store_true", help="Flag to add prior preservation loss.", ) parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.") parser.add_argument( "--num_class_images", type=int, default=100, help=( "Minimal class images for prior preservation loss. If not have enough images, additional images will be" " sampled with class_prompt." ), ) parser.add_argument( "--resolution", type=int, default=512, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--center_crop", action="store_true", default=False, help="Whether to center crop images before resizing to resolution" ) parser.add_argument( "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images." ) return parent_args class DreamBoothDataset(Dataset): """ A dataset to prepare the instance and class images with the prompts for fine-tuning the model. It pre-processes the images and the tokenizes prompts. """ def __init__( self, instance_data_dir, instance_prompt, tokenizer, class_data_dir=None, class_prompt=None, size=512, center_crop=False, ): self.size = size self.center_crop = center_crop self.tokenizer = tokenizer self.instance_data_dir = Path(instance_data_dir) if not self.instance_data_dir.exists(): raise ValueError("Instance images root doesn't exists.") self.instance_images_path = list(Path(instance_data_dir).iterdir()) print(self.instance_images_path) self.num_instance_images = len(self.instance_images_path) self.instance_prompt = instance_prompt self._length = self.num_instance_images if class_data_dir is not None: self.class_data_dir = Path(class_data_dir) self.class_data_dir.mkdir(parents=True, exist_ok=True) self.class_images_path = list(self.class_data_dir.iterdir()) self.num_class_images = len(self.class_images_path) self._length = max(self.num_class_images, self.num_instance_images) self.class_prompt = class_prompt else: self.class_data_dir = None self.image_transforms = transforms.Compose( [ transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR), transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __len__(self): return self._length def __getitem__(self, index): example = {} instance_image = Image.open(self.instance_images_path[index % self.num_instance_images]) if not instance_image.mode == "RGB": instance_image = instance_image.convert("RGB") example["instance_images"] = self.image_transforms(instance_image) example["instance_prompt_ids"] = self.tokenizer( self.instance_prompt, padding="do_not_pad", truncation=True, max_length=64, # max_length=self.tokenizer.model_max_length, ).input_ids if self.class_data_dir: class_image = Image.open(self.class_images_path[index % self.num_class_images]) if not class_image.mode == "RGB": class_image = class_image.convert("RGB") example["class_images"] = self.image_transforms(class_image) example["class_prompt_ids"] = self.tokenizer( self.class_prompt, padding="do_not_pad", truncation=True, # max_length=self.tokenizer.model_max_length, max_length=64, ).input_ids return example class PromptDataset(Dataset): "A simple dataset to prepare the prompts to generate class images on multiple GPUs." def __init__(self, prompt, num_samples): self.prompt = prompt self.num_samples = num_samples def __len__(self): return self.num_samples def __getitem__(self, index): example = {} example["prompt"] = self.prompt example["index"] = index return example