skkjodhpur
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,39 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
""
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
-
)
|
60 |
-
|
61 |
-
|
62 |
-
if __name__ == "__main__":
|
63 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model and tokenizer
|
6 |
+
model_name = "skkjodhpur/Gemma-Code-Instruct-Finetune-by-skk"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
9 |
+
|
10 |
+
# Move model to GPU if available
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
model = model.to(device)
|
13 |
+
|
14 |
+
def generate_text(prompt):
|
15 |
+
# Tokenize input
|
16 |
+
input_ids = tokenizer.encode(f"<s>[INST] {prompt} [/INST]", return_tensors="pt").to(device)
|
17 |
+
|
18 |
+
# Generate text
|
19 |
+
with torch.no_grad():
|
20 |
+
output = model.generate(
|
21 |
+
input_ids,
|
22 |
+
max_length=200,
|
23 |
+
num_return_sequences=1,
|
24 |
+
do_sample=True,
|
25 |
+
temperature=0.7,
|
26 |
+
)
|
27 |
+
|
28 |
+
# Decode and return the generated text
|
29 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
30 |
+
return generated_text
|
31 |
+
|
32 |
+
# Gradio interface
|
33 |
+
def chatbot_response(user_input):
|
34 |
+
return generate_text(user_input)
|
35 |
+
|
36 |
+
iface = gr.Interface(fn=chatbot_response, inputs="text", outputs="text", title="Code Chatbot",
|
37 |
+
description="Ask me to write code snippets or explain programming concepts!")
|
38 |
+
|
39 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|