skkjodhpur's picture
Update app.py
78e1c7d verified
import os
import gradio as gr
from langchain_google_genai import GoogleGenerativeAIEmbeddings, ChatGoogleGenerativeAI
from langchain_community.agent_toolkits.load_tools import load_tools
from langchain.agents import create_react_agent
from langchain.prompts import PromptTemplate
import requests
# Set up Google API keys from environment variables
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
SERPER_API_KEY = os.getenv('SERPER_API_KEY')
# Initialize embeddings and language model
gemini_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
llm = ChatGoogleGenerativeAI(model="gemini-1.5-pro")
# Load tools
tools = load_tools(["serpapi", "llm-math"], llm=llm, serpapi_api_key=SERPER_API_KEY)
# Define a prompt using PromptTemplate with required variables
prompt = PromptTemplate(
input_variables=["query", "agent_scratchpad", "tools", "tool_names"],
template=(
"You are a helpful assistant that answers questions based on the provided tools.\n"
"Tools available: {tool_names}\n"
"Current tools: {tools}\n"
"Scratchpad: {agent_scratchpad}\n"
"Question: {query}"
)
)
# Initialize the agent with the prompt
agent = create_react_agent(tools=tools, llm=llm, prompt=prompt)
# Function to search Google using SERP API
def google_search(query):
response = requests.get(
f"https://api.serpapi.com/search.json?q={query}&api_key={SERPER_API_KEY}"
)
results = response.json()
# Extract relevant information from the results
if "organic_results" in results:
return results["organic_results"][0]["snippet"] # Return the snippet of the first result
return "No results found."
# Function to run the agent
def search(query):
inputs = {
"query": query,
"agent_scratchpad": "", # Initial empty scratchpad
"tools": tools,
"tool_names": ", ".join([tool.name for tool in tools]),
"intermediate_steps": [] # Initial empty intermediate steps
}
try:
# Debug: Print inputs
print("Inputs to the agent:", inputs)
# Attempt to get the answer from the LLM
output = agent.invoke(inputs)
# Debug: Print output
print("Output from the agent:", output)
# Check if output is empty or not generated
if not output or "error" in output.lower():
print("LLM did not generate a valid output, searching Google...")
output = google_search(query)
return output
except Exception as e:
# Print the exception and the inputs for debugging
print(f"Error: {e}")
print("Inputs:", inputs)
return str(e)
# Create the Gradio interface
iface = gr.Interface(
fn=search,
inputs=gr.Textbox(label="Enter your search query", placeholder="What is the hometown of the reigning men's U.S. Open champion?"),
outputs="text",
title="Custom Search Engine",
description="A search engine powered by LangChain and Google Generative AI. Enter your query to get started!",
theme="default"
)
# Launch the interface with share=True for a public link
iface.launch(share=True)