File size: 9,627 Bytes
71ff1f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0b767
 
71ff1f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
967ed47
71ff1f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
967ed47
71ff1f9
 
af0b767
967ed47
 
71ff1f9
 
 
 
 
af0b767
71ff1f9
 
 
 
 
967ed47
71ff1f9
 
 
967ed47
71ff1f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
967ed47
71ff1f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
from sklearn import datasets, ensemble
from sklearn.inspection import permutation_importance
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
import plotly.graph_objs as go
import numpy as np
import plotly.express as px
import pandas as pd


import gradio as gr


diabetes = datasets.load_diabetes(as_frame=True)
X, y = diabetes.data, diabetes.target


def display_table(row_number):
    X, y = diabetes.data, diabetes.target
    XX = pd.concat([X, y], axis=1)
    temp_df = XX[row_number : row_number + 5]
    Statement = f"Displaying rows from row {row_number} to {row_number+5}"
    return Statement, temp_df


def train_model(
    test_split,
    learning_rate,
    n_estimators,
    max_depth,
    min_samples_split,
    loss,
    duration,
):
    X, y = diabetes.data, diabetes.target
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=test_split, random_state=42
    )
    params = {
        "n_estimators": n_estimators,
        "max_depth": max_depth,
        "min_samples_split": min_samples_split,
        "learning_rate": learning_rate,
        "loss": loss,
    }
    global reg
    reg = ensemble.GradientBoostingRegressor(**params)
    reg.fit(X_train, y_train)

    mse = mean_squared_error(y_test, reg.predict(X_test))

    x = np.arange(params["n_estimators"]) + 1
    train_score = reg.train_score_
    test_score = np.zeros((params["n_estimators"],), dtype=np.float64)
    for i, y_pred in enumerate(reg.staged_predict(X_test)):
        test_score[i] = mean_squared_error(y_test, y_pred)

    test_score = test_score

    fig = go.Figure()

    fig.add_trace(
        go.Scatter(
            x=x,
            y=train_score,
            mode="lines",
            name="Training Set Deviance",
            line=dict(color="blue"),
        )
    )
    fig.add_trace(
        go.Scatter(
            x=x,
            y=test_score,
            mode="lines",
            name="Test Set Deviance",
            line=dict(color="red"),
        )
    )

    frames = [
        go.Frame(
            data=[
                go.Scatter(
                    x=x[: k + 1],
                    y=train_score[: k + 1],
                    mode="lines",
                    line=dict(color="blue"),
                ),
                go.Scatter(
                    x=x[: k + 1],
                    y=test_score[: k + 1],
                    mode="lines",
                    line=dict(color="red"),
                ),
            ],
            name=f"frame{k}",
        )
        for k in range(1, len(x))
    ]

    fig.frames = frames

    fig.update_layout(
        title="Deviance",
        xaxis_title="Boosting Iterations",
        yaxis_title="Deviance",
        legend=dict(x=0, y=1),
        updatemenus=[
            dict(
                type="buttons",
                showactive=False,
                direction="right",
                pad={"r": 10},
                buttons=[
                    dict(
                        label="Play",
                        method="animate",
                        args=[
                            None,
                            dict(
                                frame=dict(duration=duration, redraw=True),
                                fromcurrent=True,
                                transition=dict(duration=0),
                            ),
                        ],
                    ),
                    dict(
                        label="Pause",
                        method="animate",
                        args=[
                            [None],
                            dict(
                                frame=dict(duration=0, redraw=False),
                                mode="immediate",
                                transition=dict(duration=0),
                            ),
                        ],
                    ),
                ],
                x=0.5,
                y=-0.2,
            )
        ],
    )

    return fig, mse


def Plot_featue_importance(test_split):
    try:
        feature_importance = reg.feature_importances_
    except:
        # return blank figures
        fig = go.Figure()
        fig.update_layout(title="Train a model to see the plots")
        return fig, fig

    sorted_idx = np.argsort(feature_importance)

    fig = px.bar(
        pd.DataFrame(
            {
                "Importance": feature_importance[sorted_idx],
                "Feature": np.array(diabetes.feature_names)[sorted_idx],
            }
        ),
        x="Importance",
        y="Feature",
        orientation="h",
        title="Feature Importance (MDI)",
    )

    X, y = diabetes.data, diabetes.target
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=test_split, random_state=42
    )
    result = permutation_importance(
        reg, X_test, y_test, n_repeats=10, random_state=42, n_jobs=2
    )

    fig1 = px.box(
        pd.DataFrame(result.importances.T, columns=diabetes.feature_names),
        title="Permutation Importance (test set)",
    )

    return fig, fig1


with gr.Blocks() as demo:
    gr.Markdown("# Gradient Boosting regression")
    gr.Markdown(
        "This demo is based on [gradient boosting regression example of scikit-learn](https://scikit-learn.org/stable/auto_examples/ensemble/plot_gradient_boosting_regression.html) Example.This example demonstrates gradient goosting to produce a predictive model from an ensemble of weak predictive models. Gradient boosting can be used for regression and classification problems. Here, we will train a model to tackle a diabetes regression task."
    )

    with gr.Tab("Train the model"):
        gr.Markdown("### Below is the diabetes dataset used in this demo 👇 ")
        gr.Markdown("### You can change the interval of rows to display.")
        gr.Markdown(
            "The diabetes dataset consists of ten baseline variables, age, sex, body mass index (BMI), average blood pressure (BP), and six blood serum measurements for 442 diabetes patients. The target variable is a quantitative measure of disease progression one year after baseline."
        )
        total_rows = X.shape[0]
        rows_number = gr.Slider(
            0, total_rows, label="Displaying Rows", value=5, step=5
        )

        rows_number.change(
            fn=display_table,
            inputs=[rows_number],
            outputs=[gr.Text(label="Row"), gr.DataFrame()],
        )

        gr.Markdown(
            "# Play with the parameters to see how the model performance changes"
        )

        gr.Markdown(
            """
        ### `Number of Estimators` : the number of boosting stages that will be performed. Later, we will plot deviance against boosting iterations.

        ### `Max Depth` : limits the number of nodes in the tree. The best value depends on the interaction of the input variables.

        ### `Min Samples Split` : the minimum number of samples required to split an internal node.

        ### `learning_rate` : how much the contribution of each tree will shrink.

        ### `loss` : loss function to optimize.

        ### `Test Split` : the percentage of the dataset to include in the test split.

        ### `Animation Speed for Deviance Plot` : the duration of the animation of Deviation Plot.
        """
        )
        with gr.Row():
            test_split = gr.Slider(0.1, 0.9, label="Test Split", value=0.2, step=0.1)
            learning_rate = gr.Slider(
                0.01, 0.5, label="Learning Rate", value=0.1, step=0.01
            )
            n_estimators = gr.Slider(
                10, 1000, label="Number of Estimators", value=100, step=10
            )
            max_depth = gr.Slider(1, 10, label="Max Depth", value=3, step=1)
            min_samples_split = gr.Slider(
                2, 10, label="Min Samples Split", value=2, step=1
            )
            loss = gr.Dropdown(
                ["squared_error", "absolute_error", "huber", "quantile"],
                label="Loss",
                value="squared_error",
            )

            duration = gr.Slider(
                0, 100, label="Animation Speed for Deviance Plot", value=25, step=10
            )

        model_btn = gr.Button("Train Model")
        gr.Markdown(
            "### Finally, we will visualize the results. To do that, we will first compute the test set deviance and then plot it against boosting iterations."
        )
        model_btn.click(
            fn=train_model,
            inputs=[
                test_split,
                learning_rate,
                n_estimators,
                max_depth,
                min_samples_split,
                loss,
                duration,
            ],
            outputs=[gr.Plot(), gr.Text(label="MSE")],
        )

    with gr.Tab("Feature Importance"):
        gr.Markdown("## Feature Importance (MDI) and Permutation Importance (test set)")
        gr.Markdown(
            "For this example, the impurity-based and permutation methods identify the same 2 strongly predictive features but not in the same order. The third most predictive feature, “bp”, is also the same for the 2 methods. The remaining features are less predictive and the error bars of the permutation plot show that they overlap with 0."
        )
        feat_imp_btn = gr.Button("Plot Feature Importance")
        with gr.Row():
            feat_imp_btn.click(
                fn=Plot_featue_importance,
                inputs=[test_split],
                outputs=[gr.Plot(), gr.Plot()],
            )


demo.launch()