Initial Commit
Browse files- app.py +71 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from sklearn.tree import DecisionTreeRegressor
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
# Create a random dataset
|
7 |
+
rng = np.random.RandomState(1)
|
8 |
+
X = np.sort(200 * rng.rand(100, 1) - 100, axis=0)
|
9 |
+
y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T
|
10 |
+
y[::5, :] += 0.5 - rng.rand(20, 2)
|
11 |
+
|
12 |
+
|
13 |
+
def plot_multi_tree(d1,d2,d3):
|
14 |
+
# Fit regression model
|
15 |
+
regr_1 = DecisionTreeRegressor(max_depth=d1)
|
16 |
+
regr_2 = DecisionTreeRegressor(max_depth=d2)
|
17 |
+
regr_3 = DecisionTreeRegressor(max_depth=d3)
|
18 |
+
regr_1.fit(X, y)
|
19 |
+
regr_2.fit(X, y)
|
20 |
+
regr_3.fit(X, y)
|
21 |
+
|
22 |
+
# Predict
|
23 |
+
X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis]
|
24 |
+
y_1 = regr_1.predict(X_test)
|
25 |
+
y_2 = regr_2.predict(X_test)
|
26 |
+
y_3 = regr_3.predict(X_test)
|
27 |
+
|
28 |
+
# Plot the results
|
29 |
+
fig = plt.figure()
|
30 |
+
s = 25
|
31 |
+
plt.scatter(y[:, 0], y[:, 1], c="navy", s=s, edgecolor="black", label="data")
|
32 |
+
plt.scatter(
|
33 |
+
y_1[:, 0],
|
34 |
+
y_1[:, 1],
|
35 |
+
c="cornflowerblue",
|
36 |
+
s=s,
|
37 |
+
edgecolor="black",
|
38 |
+
label= f"max_depth={d1}",
|
39 |
+
)
|
40 |
+
plt.scatter(y_2[:, 0], y_2[:, 1], c="red", s=s, edgecolor="black", label= f"max_depth={d2}")
|
41 |
+
plt.scatter(
|
42 |
+
y_3[:, 0], y_3[:, 1], c="orange", s=s, edgecolor="black", label= f"max_depth={d3}"
|
43 |
+
)
|
44 |
+
plt.xlim([-6, 6])
|
45 |
+
plt.ylim([-6, 6])
|
46 |
+
plt.xlabel("target 1")
|
47 |
+
plt.ylabel("target 2")
|
48 |
+
plt.title("Multi-output Decision Tree Regression")
|
49 |
+
plt.legend(loc="best")
|
50 |
+
return fig
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
title = " Illustration of multi-output regression with decision tree.🌲 "
|
56 |
+
with gr.Blocks(title=title) as demo:
|
57 |
+
gr.Markdown(f"## {title}")
|
58 |
+
|
59 |
+
with gr.Row():
|
60 |
+
d1 = gr.Slider(minimum=0, maximum=20, step=1, value = 2,
|
61 |
+
label = "Depth 1")
|
62 |
+
d2 = gr.Slider(minimum=0, maximum=20, step=1, value = 5,
|
63 |
+
label = "Depth 2")
|
64 |
+
d3 = gr.Slider(minimum=0, maximum=20, step=1, value = 8,
|
65 |
+
label = "Depth 3")
|
66 |
+
|
67 |
+
btn = gr.Button(value="Submit")
|
68 |
+
btn.click(plot_multi_tree, inputs= [d1,d2,d3], outputs= gr.Plot(label='Multi-output regression with decision trees') ) #
|
69 |
+
|
70 |
+
|
71 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
scikit-learn==1.2.1
|