""" Demo is Derived from https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression_multioutput.html """ import numpy as np import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeRegressor import gradio as gr # Create a random dataset rng = np.random.RandomState(1) X = np.sort(200 * rng.rand(100, 1) - 100, axis=0) y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T y[::5, :] += 0.5 - rng.rand(20, 2) def plot_multi_tree(d1,d2,d3): # Fit regression model regr_1 = DecisionTreeRegressor(max_depth=d1) regr_2 = DecisionTreeRegressor(max_depth=d2) regr_3 = DecisionTreeRegressor(max_depth=d3) regr_1.fit(X, y) regr_2.fit(X, y) regr_3.fit(X, y) # Predict X_test = np.arange(-100.0, 100.0, 0.01)[:, np.newaxis] y_1 = regr_1.predict(X_test) y_2 = regr_2.predict(X_test) y_3 = regr_3.predict(X_test) # Plot the results fig = plt.figure() s = 25 plt.scatter(y[:, 0], y[:, 1], c="navy", s=s, edgecolor="black", label="data") plt.scatter( y_1[:, 0], y_1[:, 1], c="cornflowerblue", s=s, edgecolor="black", label= f"max_depth={d1}", ) plt.scatter(y_2[:, 0], y_2[:, 1], c="red", s=s, edgecolor="black", label= f"max_depth={d2}") plt.scatter( y_3[:, 0], y_3[:, 1], c="orange", s=s, edgecolor="black", label= f"max_depth={d3}" ) plt.xlim([-6, 6]) plt.ylim([-6, 6]) plt.xlabel("target 1") plt.ylabel("target 2") plt.title("Multi-output Decision Tree Regression") plt.legend(loc="best") return fig title = " Illustration of multi-output regression with decision tree.🌲 " with gr.Blocks(title=title) as demo: gr.Markdown(f"# {title}") gr.Markdown(" This example shows how different max_depth of decision tree affect the predictions
" " Larger max_depth makes model learn the finner details resulting in **overfitting**
" " Play with the Depth parameter to see how it fits a noisy circle dataset.
") gr.Markdown(" **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/tree/plot_tree_regression_multioutput.html)**
") gr.Markdown(" **Dataset** : It is a toy dataset generated in shape of a circle with some small random noise added to it.
") gr.Markdown(" Different depths corresponds to different tree depth of DecisionTreeRegressor Models.
" " Larger Depth trying to overfit and learn even the finner details of the data.
" ) with gr.Row(): d1 = gr.Slider(minimum=0, maximum=20, step=1, value = 2, label = "Depth 1") d2 = gr.Slider(minimum=0, maximum=20, step=1, value = 5, label = "Depth 2") d3 = gr.Slider(minimum=0, maximum=20, step=1, value = 8, label = "Depth 3") btn = gr.Button(value="Submit") btn.click(plot_multi_tree, inputs= [d1,d2,d3], outputs= gr.Plot(label='Multi-output regression with decision trees') ) # demo.launch()