Update app.py
Browse files
app.py
CHANGED
@@ -45,17 +45,17 @@ def getColorMap(kernel, gamma):
|
|
45 |
|
46 |
with gr.Blocks() as demo:
|
47 |
gr.Markdown("## Learning the XOR function: An application of Binary Classification using Non-linear SVM")
|
48 |
-
gr.Markdown("This demo is based on this [scikit-learn example](https://scikit-learn.org/stable/auto_examples/svm/plot_svm_nonlinear.html#sphx-glr-auto-examples-svm-plot-svm-nonlinear-py).")
|
49 |
-
gr.Markdown("In this demo, we use a non-linear SVC (Support Vector Classifier) to learn the decision function of the XOR operator.")
|
50 |
|
51 |
xor_image = Image.open("xor.png")
|
52 |
gr.Image(xor_image, label="Table explaining the 'XOR' operator", shape = (208.5, 250))
|
53 |
|
54 |
gr.HTML("<hr>")
|
55 |
|
56 |
-
gr.Markdown("Furthermore, we observe that we get different decision function plots by varying the Kernel and Gamma hyperparameters of the non-linear SVC.")
|
57 |
|
58 |
-
gr.Markdown("Feel free to experiment with kernel and gamma values below to see how the quality of the decision function changes with the hyperparameters.")
|
59 |
|
60 |
inp1 = gr.Radio(['poly', 'rbf', 'sigmoid'], label="Kernel", info="Choose a kernel")
|
61 |
inp2 = gr.Radio(['scale', 'auto'], label="Gamma", info="Choose a gamma value")
|
|
|
45 |
|
46 |
with gr.Blocks() as demo:
|
47 |
gr.Markdown("## Learning the XOR function: An application of Binary Classification using Non-linear SVM")
|
48 |
+
gr.Markdown("### This demo is based on this [scikit-learn example](https://scikit-learn.org/stable/auto_examples/svm/plot_svm_nonlinear.html#sphx-glr-auto-examples-svm-plot-svm-nonlinear-py).")
|
49 |
+
gr.Markdown("### In this demo, we use a non-linear SVC (Support Vector Classifier) to learn the decision function of the XOR operator.")
|
50 |
|
51 |
xor_image = Image.open("xor.png")
|
52 |
gr.Image(xor_image, label="Table explaining the 'XOR' operator", shape = (208.5, 250))
|
53 |
|
54 |
gr.HTML("<hr>")
|
55 |
|
56 |
+
gr.Markdown("### Furthermore, we observe that we get different decision function plots by varying the Kernel and Gamma hyperparameters of the non-linear SVC.")
|
57 |
|
58 |
+
gr.Markdown("### Feel free to experiment with kernel and gamma values below to see how the quality of the decision function changes with the hyperparameters.")
|
59 |
|
60 |
inp1 = gr.Radio(['poly', 'rbf', 'sigmoid'], label="Kernel", info="Choose a kernel")
|
61 |
inp2 = gr.Radio(['scale', 'auto'], label="Gamma", info="Choose a gamma value")
|