MuskanMjn commited on
Commit
f114100
·
1 Parent(s): 8e737a5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -0
app.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import matplotlib.pyplot as plt
3
+ from sklearn import svm
4
+ import gradio as gr
5
+ from PIL import Image
6
+
7
+ def calculate_score(clf):
8
+ xx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500))
9
+ X_test = np.c_[xx.ravel(), yy.ravel()]
10
+ Y_test = np.logical_xor(xx.ravel() > 0, yy.ravel() > 0)
11
+ return clf.score(X_test, Y_test)
12
+
13
+ def getColorMap(kernel, gamma):
14
+ # prepare the training dataset
15
+ np.random.seed(0)
16
+ X = np.random.randn(300, 2)
17
+ Y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)
18
+
19
+ # fit the model
20
+ clf = svm.NuSVC(kernel=kernel, gamma=gamma)
21
+ clf.fit(X, Y)
22
+
23
+ #create a grid for the plotting the decision function
24
+ xx, yy = np.meshgrid(np.linspace(-3, 3, 500), np.linspace(-3, 3, 500))
25
+
26
+ # plot the decision function for each datapoint on the grid
27
+ Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
28
+ Z = Z.reshape(xx.shape)
29
+
30
+ plt.imshow(
31
+ Z,
32
+ interpolation="nearest",
33
+ extent=(xx.min(), xx.max(), yy.min(), yy.max()),
34
+ aspect="auto",
35
+ origin="lower",
36
+ cmap=plt.cm.PuOr_r,
37
+ )
38
+ contours = plt.contour(xx, yy, Z, levels=[0], linewidths=2, linestyles="dashed")
39
+ plt.scatter(X[:, 0], X[:, 1], s=30, c=Y, cmap=plt.cm.Paired, edgecolors='k')
40
+ plt.title(f"Decision function for Non-Linear SVC with the {kernel} kernel and '{gamma}' gamma ", fontsize='14') #title
41
+ plt.xlabel("X",fontsize='13') #adds a label in the x axis
42
+ plt.ylabel("Y",fontsize='13') #adds a label in the y axis
43
+ return plt, calculate_score(clf)
44
+
45
+
46
+ with gr.Blocks() as demo:
47
+ gr.Markdown("## Learning the XOR function: An application of Binary Classification using Non-linear SVM")
48
+ gr.Markdown("This demo is based on this [scikit-learn example](https://scikit-learn.org/stable/auto_examples/svm/plot_svm_nonlinear.html#sphx-glr-auto-examples-svm-plot-svm-nonlinear-py).")
49
+ gr.Markdown("In this demo, we find the XOR of the inputs by learning the XOR function using Non-linear SVM.")
50
+
51
+ xor_image = Image.open("xor.png")
52
+ gr.Image(xor_image, label="Table explaining the 'XOR' operator")
53
+
54
+ gr.HTML("<hr>")
55
+
56
+ gr.Markdown("Furthermore, we observe that we get different decision function plots by varying the Kernel and Gamma hyperparameters the Non-Linear SVC.")
57
+
58
+ inp1 = gr.Radio(['poly', 'rbf', 'sigmoid'], label="Kernel", info="Choose a kernel")
59
+ inp2 = gr.Radio(['scale', 'auto'], label="Gamma", info="Choose a gamma value")
60
+ btn = gr.Button(value="Submit")
61
+
62
+ with gr.Row():
63
+ plot = gr.Plot(label=f"Decision function plot for Non-Linear SVC with the '{inp1}' kernel and '{inp2}' gamma ")
64
+ num = gr.Textbox(label="Test Accuracy")
65
+
66
+ btn.click(getColorMap, inputs=[inp1, inp2], outputs=[plot, num])
67
+
68
+
69
+ if __name__ == "__main__":
70
+ print("hdh")
71
+ demo.launch()
72
+ print("gedhhfhf")